
aprx(8) SystemManager’s Manual aprx(8)

NAME
Aprx-2 − An APRS iGate application with integrated Digipeater.

SYNOPSIS
aprx [−d[d[d]]] [ −e] [−i] [−v] [−V] [−l syslogfacilityname] [−f /etc/aprx.conf]

DESCRIPTION
The aprx program is a special purpose Ham-radio application supplying infrastructure services for APRS
protocol use.

A more detailed manual is available at:
http://ham.zmailer.org/oh2mqk/aprx/aprx-manual.pdf

FEATURES
The Aprx begun as a receive-only APRS iGate application with minimum system support technology
requirements. Thisversion has also multi-port digipeater support, transmit iGate, and experimental D-PRS-
to-APRS RF/Rx-iGate.

• The Aprx does not require machine to have any other software in it, than things in UNIX standard libc.
In particular no special AX.25 libraries at all, nor widgets or even C++ runtime.

• Important goal has been to keep R/W memory footprint as small as possible, and on general purpose
i386 Linux a single radio port iGate+digipeater is now around 250 kB of R/W memory allocations.

• Any UNIX (and UNIX like) platform should work for the Aprx, or be trivially ported.

• The Aprx can listen "TNC2 monitor" and "KISS" speaking TNCs on any serial ports.

• For Aprx the serial port can be ordinary host computer port, a USB serial port, or remote port on a
remote server behind the internet, like cisco router AUX ports (port 4001, TCP STREAM without TEL-
NET escapes.)

• The Aprx does not require machine to have AX.25 protocol support internally!(Thus this works also
on e.g. Solaris and BSD machines without PFAX25 sockets.)

• On Linux machine with kernel internal AX.25 protocol support, the Aprx can listen on it with promis-
cuous mode and in order to use that, the Aprx must be started asroot user, and be configured to list
interface callsigns that APRS packets are coming in.The AX.25 socket listening is not in itself config-
urable, it is always exists in Linux systems, and related configuration parameters are ignored in other
platforms. Thissocket listening does not need auxiliary "libax25" to function.

• The Aprx program can be run without root privileges at least against remote serial port servers. One
must change local serial port ownership or access-groups (if any are used) to userid that runs the pro-
gram and possibly do several changes of file paths in configuration file beginning with its location
(startup parameter). How that is done is up to the user or system integrator of this program.

• The Aprx connects with one callsign-ssid pair to APRS-IS core for all received radio ports.

• The Aprx Rx-iGate knows that messages with following tokens in AX.25 VIA fields are not to be
relayed into APRS-IS network:

RFONLY, NOGATE, TCPIP, TCPXX

• The Aprx Rx-iGate knows that following source address prefixes are bogus and thus messages with
them are to be junked:

WIDE, RELA Y, TRACE, TCPIP, TCPXX, NOCALL, N0CALL

• The Aprx Rx-iGate Drops allquerymessages ("?").

• The Aprx Rx-iGate opens up all 3rd party messages ("}"), and checks the internal data if it is OK to be
gated out to APRS-IS.

• The Aprx has built-in "Erlang monitor" mechanism that telemeters each receiving interface to APRS-IS.
It can also syslog the interface specific channel occupancy, and optionally can output to STDOUT.

• The Aprx (since version 1.91) can do digipeater functions.

2.08 - 2014 March 11 1



aprx(8) SystemManager’s Manual aprx(8)

• The Aprx (since version 1.99) does have experimental D-STAR D-PRS to APRS gateway functionality.
See theaprx-manual.pdffor details.

• The Aprx can be run on systems without writable storage, even with very little memory, like on
NSLU2, and OpenWrt platforms. The experiments have shown that a single radio Tx-iGate+digipeater
works with less than 300 kB of writable RAM for the Aprx itself. Additional memory is necessary for
operating system services of TCP/IP networking, and serial port drivers.

OPTIONS
Theaprx has following runtime options:

−i Keep the program foreground without debugging outputs.

−d Turn on verbose debugging, outputs data to STDOUT.

−dd the "more debug" mode shows also details of network interaction with the APRS-IS network ser-
vice.

−ddd the "even more debug" mode shows also detail classification of every kind of frame received in
KISS variants.

−e Erlang outputprints 10 minute and 60 minute traffic accumulation byte counts, and guestimates
on channel occupancy, alias "Erlang". These outputs are sent to STDOUT, which system operator
may choose to log elsewere. Thisis independent if the "−l" option below.

−f /etc/aprx.conf
Configuration file, given path is built-in default, and can be overridden by the program runner.

−l syslogfacilityname
Defines syslog(3) facility code used by the erlang reporter by defining its name.Default value is:
NONE, and accepted values are:LOG_DAEMON , LOG_FTP, LOG_LPR , LOG_MAIL ,
LOG_NEWS, LOG_USER, LOG_UUCP, LOG_LOCAL0 , LOG_LOCAL1 ,
LOG_LOCAL2 , LOG_LOCAL3 , LOG_LOCAL4 , LOG_LOCAL5 , LOG_LOCAL6 ,
LOG_LOCAL7 . That list is subject to actual facility code set in the system, and in any case if
you specify a code that is not known, then the program will complain during the startup, and
report it. This is independent of the "−e" option above.

−v Verbose logging of received traffic to STDOUT. Lines begin with reception timestamp (UNIX
time_t seconds), then TAB, and either data as is, or with prefix byte: "*" for "discarded due to data
content", or possibly "#" for "discarded due to APRS-IS being unreachable".

−V Print source version compiled to this binary, and exit.

DEBUGGING SYSTEM
Use parameter set−ddv (or −dddv) to test new configuration by running it synchronously to console.

NORMAL OPERATION
Running theaprx program without any of option flags:−d, −v, or −e reads possibly given configuration,
then automatically backgrounds the process, and writespidfile. When the process whose number written in
pidfile is then sent a SIGTERM signal, it automatically shuts down itself, and removes the pidfile. The
pidfile can be runtime configured with the−f /etc/aprx.conf file, and it has default name of:
/var/run/aprx.pid.

CONFIGURATION FILE
The configuration file is used to setup the program to do its job.

You can construct following configurations:

• A receive-onlyiGate server.

• A digipeater with bi-directional iGate server.

• A single radiodigipeater. (The most common type of digipeater.)

• A multi-interfaceddigipeater relaying traffic in between multiple radios.(On same or on separate fre-
quencies.)

2.08 - 2014 March 11 2



aprx(8) SystemManager’s Manual aprx(8)

• A viscuous digipeater, which relays a packet it heard from viscuous source after the viscuous delay,
unless it was heard more times than only once, or it was heard from non-viscuous source before the vis-
cuous one was digipeated. This allows of making fill-in digipeaters that will not digipeat the packet, if
that same packet was heard twice or more before the viscuos delay expired.

In the configuration file a line ending backslash (\) character concatenates next input line into itself. Com-
bined result can be up to 8000 bytes long. This combination can be a bit surprising:

#beacon .... long text \
continuation

results in single long input line that begins with ’#’ (it is comment) and all continuations following it have
been folded in. Presented line number of combined continuation is the line number of thelast line segment
in this type of multi-line input.

In the configuration file there is special treatment for quoted strings.They are stripped of the outer quotes,
and "\ " character is processed within the source string to produce an output string. The escapes are:

\n Produces newline character (Control-J) on the output string.

\r Produces carriage return character (Control-M) on the output string.

\\ Places a back-slash on the output string.

\" Places a double-quote on the output string.

\’ Places a single-quote on the output string.

\xHH Lower-case "x" precedes two hex digits which ensemble is then converted to a single byte in the
output string.

The complex encodings are for possible initstrings of the external devices, and in particular for initstrings
ev en a nul byte ( \x00 ) is supported.

A configuration token without surrounding quotes does not understand the backslash escapes.

#
# Sample configuration file for the APRX -- an Rx-only APRS iGate with
# Digipeater functionality.
#
#
# Simple sample configuration file for the APRX-2
#
# This configuration is structured with Apache HTTPD style tags
# which then contain subsystem parameters.
#

#
# For simple case, you need to adjust 4 things:
# - Mycall parameter
# - Select correct type of interface (ax25-device or serial-device)
# - Optionally set a beacon telling where this system is
# - Optionally enable digipeater with or without tx-igate
#

#
#
# Define the parameters in following order:
# 1) < aprsis> ** zero to many
# 2) < logging> ** zero or one
# 3) < interface> ** one to many
# 4) < beacon> ** zero to many
# 5) < telemetry ** zero to many

2.08 - 2014 March 11 3



aprx(8) SystemManager’s Manual aprx(8)

# 6) < digipeater> ** zero to many (at most one for each Tx)
#

#
# Global macro for simplified callsign definition:
# Usable for 99+% of cases.
#

mycall N0CALL-1

#
# Global macro for simplified "my location" definition in
# place of explicit "lat nn lon mm" at beacons. Will also
# give "my location" reference for "filter m/100".
#
#myloc lat ddmm.mmN lon dddmm.mmE

<aprsis>
# The login parameter:
# Station call−id used for relaying APRS frames into APRS−IS.
# Use this only to define other callsign for APRS−IS login.
#
#login OTHERCALL-7 # l ogin defaults to $mycall

#
# The passcode parameter:
# Unique code for your callsign to allow transmitting packets
# i nto the APRS-IS.
#
passcode -1

# APRS-IS server name and portnumber.
# Every reconnect does re−resolve the name to IP address.
# Some alternates are shown below, choose something local to you.
#
server rotate.aprs2.net 14580
#server noam.aprs2.net 14580
#server soam.aprs2.net 14580
#server euro.aprs2.net 14580
#server asia.aprs2.net 14580
#server aunz.aprs2.net 14580

# Some APRS−IS servers tell every about 20 seconds to all contact
# ports that they are there and alive. Others are just silent.
# Recommended value 3*"heartbeat" + some −> 120 (seconds)
#
#heartbeat−timeout 0 # Disabler of heartbeat timeout

# APRS-IS server may support some filter commands.
# See: http://www.aprs-is.net/javAPRSFilter.aspx
#
# You can define the filter as single long quoted string, or as

2.08 - 2014 March 11 4



aprx(8) SystemManager’s Manual aprx(8)

# many short segments with explaining comments following them.
#
# Usability of these filters for a Tx-iGate is dubious, but
# t hey exist in case you for example want to Tx-iGate packets
# f rom some source callsigns in all cases even when they are
# not in your local area.
#
#filter "possibly multiple filter specs in quotes"
#
#filter "m/100" # My-Range filter
#filter "f/OH2XYZ−3/50" # Friend-Range filter
</aprsis>

<logging>
# pidfile is UNIX way to tell that others that this program is
# r unning with given process-id number. This has compiled-in
# default value of: pidfile /var/run/aprx.pid
#
#pidfile /var/run/aprx.pid

# r flog defines a rotatable file into which all RF-received packets
# are logged.
#
#rflog /var/log/aprx/aprx−rf.log

# aprxlog defines a rotatable file into which most important
# events on APRS−IS connection are logged, namely connects and
# disconnects.
#
#aprxlog /var/log/aprx/aprx.log

# erlangfile defines a mmap():able binary file, which stores
# r unning sums of interfaces upon which the channel erlang
# estimator runs, and collects data.
# Depending on the system, it may be running on a filesystem
# t hat actually retains data over reboots, or it may not.
# With this backing store, the system does not loose cumulating
# erlang data over the current period, if the restart is quick,
# and does not stradle any exact minute.
# ( Do restarts at 15 seconds over an even minute..)
# This file is around 0.7 MB per each interface talking APRS.
# If t his file is not defined and can not be created,
# i nternal non-persistent in-memory storage will be used.
#
# Built-in default value is: /var/run/aprx.state
#
#erlangfile /var/run/aprx.state

# erlang−loglevel is config file edition of the "−l" option
# pushing erlang data to syslog(3).
# Valid values are (possibly) following: NONE, LOG_DAEMON,
# LOG_FTP, LOG_LPR, LOG_MAIL, LOG_NEWS, LOG_USER, LOG_UUCP,
# LOG_LOCAL0, LOG_LOCAL1, LOG_LOCAL2, LOG_LOCAL3, LOG_LOCAL4,

2.08 - 2014 March 11 5



aprx(8) SystemManager’s Manual aprx(8)

# LOG_LOCAL5, LOG_LOCAL6, LOG_LOCAL7. If the parameter value is
# not acceptable, list of accepted values are printed at startup.
#
#erlang−loglevel NONE

# erlanglog defines a rotatable file into which erlang data
# is w ritten in text form.
#
#erlanglog /var/log/aprx/erlang.log

# erlang−log1min option logs to syslog/file also 1 minute
# i nterval data from the program. (In addition to 10m and 60m.)
#
#erlang−log1min
</logging>

# * ********** Multiple <interface> definitions can follow *********

# ax25−device Lists AX.25 ports by their callsigns that in Linux
# s ystems receive APRS packets. If none are defined,
# or t he system is not Linux, the AX.25 network receiver
# i s n ot enabled. Used technologies need at least
# Linux kernel 2.4.x
#
# t x−ok Boolean telling if this device is able to transmit.
#
#<interface>
# ax25−device $mycall # Either $mycall macro, or actual callsign
# #tx−ok false # t ransmitter enable defaults to false
# #telem−to−is true # set to false to disable
#</interface>

# The TNC serial options. Parameters are:
# − /dev/ttyUSB1 −− tty device
# − 19200 −− baud rate, supported ones are:
# 1200, 2400, 4800, 9600, 19200, 38400, ...
# − 8n1 −− 8−bits, no parity, one stop−bit,
# no other supported modes
# − "KISS" − plain basic KISS mode
# − "XORSUM" alias "BPQCRC" − KISS with BPQ "CRC" byte
# − "SMACK" alias "CRC16" − KISS with real CRC
# − "FLEXNET" − KISS with real CRC
# − "TNC2" − TNC2 monitor format
# − "DPRS" − DPRS (rx) Gateway
#
#<interface>
# s erial−device /dev/ttyUSB0 19200 8n1 KISS
# #callsign $mycall # Either $mycall macro, or actual callsign
# #tx−ok false # t ransmitter enable defaults to false
# #telem−to−is true # set to false to disable
#</interface>
#

2.08 - 2014 March 11 6



aprx(8) SystemManager’s Manual aprx(8)

#<interface>
# s erial−device /dev/ttyUSB1 19200 8n1 TNC2
# #callsign $mycall # Either $mycall macro, or actual callsign
# #tx−ok false # TNC2 monitor can not have transmitter
# #telem−to−is true # set to false to disable
#</interface>
#
#<interface>
# s erial−device /dev/ttyUSB1 19200 8n1 DPRS
# c allsign dprsgwcallsign # must define actual callsign
# #tx−ok false # DPRS monitor can not do transmit
# #telem−to−is true # set to false to disable
#</interface>
#

# * ********** Multiple <beacon> definitions can follow *********
<beacon>
#
# Beacons are sent out to radio transmitters AND/OR APRSIS.
# Default is "both", other modes are settable.
#
#beaconmode { aprsis | both | radio }
#
# Beacons are sent from a circullar transmission queue, total cycle time
# of t hat queue is 20 minutes by default, and beacons are "evenly"
# distributed along it. Actual intervals are randomized to be anything
# i n between 80% and 100% of the cycle-size / number-of-beacons.
# First beacon is sent out 30 seconds after system start.
# Tune the cycle-size to be suitable to your number of defined beacons.
#
#cycle-size 20m
#
#
# Basic beaconed thing is positional message of type "!":
#
#beacon symbol "R&" lat "0000.00N" lon "00000.00E" comment "Rx-only iGate"
#beacon symbol "R&" $myloc comment "Rx-only iGate"
#
# Following are basic options:
# ’ symbol’ no default, must be defined!
# ’ lat’ coordinate latitude: ddmm.mmN (no default!)
# ’ lon’ coordinate longitude: dddmm.mmE (no default!)
# ’ $myloc’ coordinate values taken from global ’myloc’ entry,
# and usable in place of explicit ’lat’+’lon’.
# ’ comment’ optional tail part of the item, default is nothing
#
# Sample symbols:
# R& i s f or "Rx-only iGate"
# I & i s f or "Tx-iGate"
# / # i s f or "Digipeater"
# I # i s f or "Tx-iGate + Digipeater"
#
# Additional options are:

2.08 - 2014 March 11 7



aprx(8) SystemManager’s Manual aprx(8)

# ’ srccall’ parameter sets claimed origination address.
# ’ dstcall’ sets destination address, default "APRXnn"
# ’ interface’ parameter picks an interface (must be "tx-ok true" type)
# ’ via’ sets radio distribution pattern, default: none.
# ’ timefix’ On APRS messages with HMS timestamp (hour:min:sec), the
# s ystem fixes appropriate field with transmit time timestamp.
#
# Message type is by default ’!’, which is positional no timestamp format.
# Other possible formats are definable with options:
# ’ type’ Single character setting type: ! = / @
# ’ item’ Defines a name of Item (’)’) type beacons.
# ’ object’ Defines a name of Object (’;’) type beacons.
#
# ’ file’ option tells a file at which a _raw_ APRS message content is
# expected to be found as first line of text. Line ending newline
# i s r emoved, and no escapes are supported. The timefix is
# available, though probably should not be used.
#
# ’ exec’ option defines program path for a program whose stdout is
# r ead up to first newline (which must be present), and then
# t ransmit as beacon content. No format helpers are supplied,
# although ’timefix’ can be used.
# ’ timeout’ option is associated with ’exec’, and defines when the
# exec must by latest produce the output, or the subprogram
# execution is killed. Default value is 10 seconds.
#
# The parameter sets can vary:
# a) ’ srccall nnn-n dstcall "string" symbol "R&" lat "ddmm.mmN" lon "dddmm.mmE" [comment "any text"]
# b) ’ srccall nnn-n dstcall "string" raw "string"’
#
# The a) form flags on some of possible syntax errors in parameters.
# It w ill also create only "!" type messages. The dest parameter
# defaults to "APRS", but can be used to give other destinations.
# The via parameter can be used to add other keywords, like "NOGATE".
#
# Writing correct RAW format beacon message is very hard,
# which is evidenced by the frequency of bad syntax texts
# people so often put there... If you can not be persuaded
# not to do it, then at least VERIFY the beacon result on
# web service like findu.com, or aprs.fi
#
#beacon file /tmp/wxbeacon.txt
#beacon srccall N0CALL−3 raw "!0000.00NR00000.00E&aprx − an Rx−only iGate"
#beacon srccall N0CALL−3 raw "!0000.00NI00000.00E&aprx − an iGate"
#beacon srccall $mycall symbol "R&" lat "0000.00N" lon "00000.00E" \

comment "aprx − an Rx−only iGate"
#beacon srccall $mycall symbol "I&" lat "0000.00N" lon "00000.00E" \

comment "aprx iGate"
</beacon>

# * ********** <telemetry> definition(s) follow *********
#
# The system will always send telemetry for all of its interfaces
# to A PRSIS, but there is an option to define telemetry to be sent

2.08 - 2014 March 11 8



aprx(8) SystemManager’s Manual aprx(8)

# to r adio channel by using following sections for each transmitter
# t hat is wanted to send out the telemetry.
#
# t ransmitter - callsign referring to <interface>
# v ia - optional via-path, only 1 callsign!
# s ource - one or more of <interface> callsigns for which
# t he telemetry transmission is wanted for
#
#<telemetry>
# t ransmitter $mycall
# v ia TRACE1-1
# s ource $mycall
#</telemetry>

# * ********** <digipeater> definition(s) follow *********
#
# The digipeater definitions tell transmitters that receive
# AX.25 packets from possibly multiple sources, and then what
# t o do on t he AX.25 headers of those messages.
#
# There is one transmitter per digipeater −− and inversely, there
# c an be at most one digipeater for each transmitter.
#
# I n each digipeater there is at least one <source>, usually same
# as t he transmitter.
#
#<digipeater>
# t ransmitter $mycall
# #ratelimit 60 120 # default: average 60 packets/minute,
# # burst max 120 packets/minute
# #srcratelimit 10 20 # Example: by sourcecall:
# # average 10 packets/minute,
# # burst max 20 packets/minute
#
# <source>
# s ource $mycall
# # ratelimit 60 120 # default: average 60 packets/minute,
# #  # burst max 120 packets/minute
# # viscous−delay 0 # no v iscous delay for RF−>RF digipeat
# # ratelimit 120 # default: max 120 packets/minute
# </source>
#
# #<source> # Adding APRSIS source makes this tx-igate
# # source APRSIS
# # ratelimit 60 120 # default: average 60 packets/minute,
# #  # burst max 120 packets/minute
# # relay−type third−party # Must define this for APRSIS source!
# # viscous−delay 5 # Recommendation: 5 seconds delay to give
# #  # RF delivery time make itself known.
# # filter t/m # Tx-iGate only messages sent to me by APRSIS
# #</source>
#
#</digipeater>

2.08 - 2014 March 11 9



aprx(8) SystemManager’s Manual aprx(8)

GLOBAL MYCALL PARAMETER
In majority of usage models, system needs single configured callsign. This is set by using themycall con-
figuration option, and latter referred to in configurations as$mycall parameter in place of callsigns.

GLOBAL MYLOC PARAMETER
Usually multiple beacons, and simple filter rules are wanted to be using same reference coordinate for this
system. Thisis set by using themyloc configuration option, and latter referred to in configurations as
$mylocparameter in place of "lat nn lon mm" coordinate pair of beacons.

APRSIS SECTION FOR APRSIS CONNECTIVITY
Settings in the<aprsis>section define connectivity with the APRS-IS network service.

Necessary option isserver, and others are optional.

Av ailable options are:

login $mycall
The APRSIS network login. Defaults to themycall configuration entry.

passcode -1
Defining a small integer in range of 0 to 32767 authenticating your login to APRS-IS server. Ask
for assistance from your APRS-IS managers, or calculate it yourself withaprspassprogram.
(Web search engines do find several of them.)

server server-name 14850
Define which APRS-IS is being connected to.Multiple definitions are used in round-robin style,
if the connection with the previous one fails for some reason.

filter ’filter specs in quotes’# comments
Set filter adjunct definitions on APRS-IS server. Multiple entries are catenated together in entry
order, when connecting to the server.

LOGGING SECTION
The<logging>section defines miscellaneous file names and options for state tracking and logging use.

pidfile /var/run/aprx.pid
The pidfile is UNIX way to tell that others that this program is running with given process-id
number. This has compiled-in default value of:pidfile /var/run/aprx.pid

rflog /var/log/aprx/aprx−rf.log
The rflog defines a rotatable file into which all RF-received packets are logged. There is no
default.

aprxlog /var/log/aprx/aprx.log
Theaprxlogdefines a rotatable file into which most important events on APRS-IS connection are
logged, namely connects and disconnects. There is no default.

erlangfile /var/run/aprx.state
The erlangfile defines a mmap():able binary file, which stores running sums of interfaces upon
which the channel erlang estimator runs, and collects data.Depending on the system, it may be
running on a filesystem that actually retains data over reboots, or it may not.With this backing
store, the system does not loose cumulating erlang data over the current period, if the restart is
quick, and does not stradle any exact minute. This file is around 0.7 MB per each interface talk-
ing APRS. If this file is not defined and can not be created, internal non-persistent in-memory
storage will be used. Built-in default value is: /var/run/aprx.state

erlang−loglevel NONE
The erlang−loglevel is config file edition of the "−l" option pushing erlang data tosyslog(3).
Valid values are (possibly) following: NONE, LOG_DAEMON, LOG_FTP, LOG_LPR,
LOG_MAIL, LOG_NEWS, LOG_USER, LOG_UUCP, LOG_LOCAL0, LOG_LOCAL1,
LOG_LOCAL2, LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5, LOG_LOCAL6,
LOG_LOCAL7. If the parameter value is not acceptable, list of accepted values are printed at
startup.

2.08 - 2014 March 11 10



aprx(8) SystemManager’s Manual aprx(8)

erlanglog /var/log/aprx/erlang.log
The erlanglog defines a rotatable file into which erlang data is written in text form. There is no
default.

erlang−log1min
The erlang−log1minoption logs to syslog/file also 1 minute interval data from the program.(In
addition to 10m and 60m.) Default is off.

INTERFACE SECTIONS FOR RADIO PORTS
The<interface> sections define connections to radio modems. Several different styles are available:

• Local serial ports in the machine (device−serial /dev/ttyS0speed encapsulation)

• Local USB serial ports in the machine (device−serial /dev/ttyUSB0speed encapsulation)

• Remote served serial ports over a TCP stream. Implemented to talk with Cisco AUX ports on "range
4000" (TCP STREAM, no TELNET escapes) (tcp−device 12.34.56.78 4001encapsulation)

• Linux internal AX.25 network attached devices (ax25−device CALLSIGN−1) are only available when
running on a Linux system. On a non-Linux system it connects to a null interface, never getting anything
and can always sink everything.

The serial port name tells what kind of port is in question, and while port baud-rate (9600) and character
settings (8n1) must always be set, they are ignored for the remote connection.

Following speedmodes are available:
1200,1800,2400, 4800, 9600, 19200,38400, 57600,
115200, 230400, 460800, 500000, 576000

Likely available speeds are in bold, other supported values are listed in italics.

Following encapsulationmodes are available:

TNC2 is capable only to monitor the packets reported by TNC2 type debug output, and Rx-iGate, but
they are not acceptable as source for a <digipeater>.

DPRS is special mode for gateway from D-STAR D-PRS to APRS. This must always have a callsign
definition for the gateway.

KISS Basic KISS encapsulation. No checksums.Will autodetect (sometimes) packets with SMACK
or FLEXNET characteristics.

SMACK Stuttgart Modified Amateurradio-CRC-KISS, which runs CRC-16 checksum on KISS datas-
tream much in the same way as HDLC has CCITT-CRC checksum on it.

FLEXNET
FLEXNETwhich runs a CRC checksum of its own polynomial on KISS datastream much in
the same way as HDLC has CCITT-CRC checksum on it.

BPQCRC XOR "checksum" on dataframes. Also known as "XKISS", and "XORSUM".This detects
single bit failure, but weakly any multibit failures. Extra0x00 bytes have no effect on check-
sum, etc.

On <kiss−subif tncid> sub-options the parameter istncid, which sets up KISS multiplexer parameter so
that subsequent options applies only on designated KISS sub-port.

Thecallsignoption sets port specific callsign when relaying to APRS-IS.

The telem−to−is trueoption can be used to disable (by explicitly setting it to ’false’) radio interface
telemetry transmission to APRS-IS. By default it is on.This is separate from <telemetry> sections, which
send telemetry to RF interfaces.

<interface>
serial−device /dev/ttyUSB1 19200 8n1 KISS
tx−ok false # r eceive only (default)
callsign OH2XYZ−R2 # KISS subif 0
initstring "...." # i nitstring option

2.08 - 2014 March 11 11



aprx(8) SystemManager’s Manual aprx(8)

timeout 900 # 900 seconds of no Rx
</interface>

<interface>
serial−device /dev/ttyUSB1 19200 8n1 SMACK
tx−ok false # r eceive only (default)
callsign OH2XYZ−R2 # KISS subif 0
initstring "...." # i nitstring option
timeout 900 # 900 seconds of no Rx

</interface>

<interface>
serial−device /dev/ttyUSB2 19200 8n1 KISS
initstring "...."
timeout 900 # 900 seconds of no Rx
<kiss−subif 0>

callsign OH2XYZ−2
tx−ok true # This is our transmitter

</kiss−subif>
<kiss−subif 1>

callsign OH2XYZ−R3 # This is receiver
tx−ok false # r eceive only (default)

</kiss−subif>
</interface>

<interface>
tcp−device 172.168.1.1 4001 KISS
tx−ok false # r eceive only (default)
callsign OH2XYZ−R4 # KISS subif 0
initstring "...." # i nitstring option
timeout 900 # 900 seconds of no Rx

</interface>

<interface>
ax25−device OH2XYZ−6 # Works only on Linux systems
tx−ok true # This is also transmitter

</interface>

<interface> # RX-IGATE ONL Y, NOT USABLE AS DIGIPEATER SOURCE
serial−device /dev/ttyUSB1 19200 8n1 TNC2
callsign OH2XYZ−R6 # TNC2 has no sub-ports
initstring "...." # i nitstring option
timeout 900 # 900 seconds of no Rx

</interface>

BEACON DEFINITIONS
The beacons are defined using<beacon>configuration sections.

Because classical beacon definitions are highly error−prone, this program has a new way to define them:

• The new way to define beacons:
beacon symbol "R&" lat "0000.00N" lon "00000.00E" \

comment "aprx − iGate"

• Semi-clasical definition of raw APRS packet:
beacon raw "!0000.00NR00000.00E&aprx − iGate"

2.08 - 2014 March 11 12



aprx(8) SystemManager’s Manual aprx(8)

• Load beacon text from a file, path data is configurable:
beacon file /path/to/file

• Run a program to produce beacon data in raw format:
beacon exec /path/to/file timeout 10

The fields and parameters:

interface An optional "interface" parameter tells that this beacon shall be sent only to interface whose
callsign is named. Default is to send to all interfaces that have "tx−ok true" setting.

type An optional one character string parameter, with one of following contents: "!", "=", "/",
"@", ";" and ")".

srccall An optional "srccall" parameter tells callsign which is claimed as this particular beacon
source. Itmust be valid AX.25 callsign in text format. When this "srccall" parameter is not
given, value of "mycall" configuration entry is used.

dstcall An optional "dstcall" parameter has built-in software version dependent value, but it can be
used to define another value.

via An optional "via" parameter defaults to nothing, but can be used to define additional "VIA"
path tokens, for example: "WIDE1−1".

item An optional "item" parameter is for defining a name for an item type APRS packet.

object An optional "object" parameter is for defining a name for an object type APRS packet.

symbol A mandatory"symbol" parameter is two character code, which for Rx-only iGate is pair:
"R&"

lat This mandatoryparameter defineslatitudecoordinate (that is: north/south.) It is expected to
be of format: "ddmm.mmN" where "dd" definestwo digits of degreesof latitude, and
"mm.mm" defines two digits + decimal dot + two digits of minutesof latitude. Then comes
literal "N" or "S" indicating hemisphere.

lon This mandatoryparameter defineslongitudecoordinate (that is: east/west.)It is expected to
be of format: "dddmm.mmE" where "ddd" definesthree digitsof degreesof longitude, and
"mm.mm" defines two digits + decimal dot + two digits of minutesof longitude. Then
comes literal "E" or "W" indicating hemisphere.

comment This optional parameter defines commentary text tail on the beacon packet. If you need
characters outside US-ASCII character set, use of UTF-8 encoded UNICODE character set
is recommended.

raw This alternateformat defines whole APRS packet content in raw text format. Currently this
type of packets are not validated for syntax at all!

file This alternativeway defines path to a file with single text line defining content ofraw mes-
sage data.

exec This alternativemode runs designated program, and waits for at most atimeoutnumber of
seconds (default 10) for the program to produce the result.

timeout This is optional parameter forexecallowing altered timeout (number of seconds) for waiting
the program to respond. Default is 10 seconds.

The type/symbol/lat/lon/comment-format supports only a few types of APRS packets. It splits input into
small slices that are possible to validate in detail. (See "DEBUGGING SYSTEM" above.)

RF-TELEMETRY
The aprx system will always send telemetry for all of its interfaces to APRSIS, but there is an option to
define telemetry to be sent to radio channel by using following sections for each transmitter that is wanted

2.08 - 2014 March 11 13



aprx(8) SystemManager’s Manual aprx(8)

to send out the telemetry.

The parameters of<telemetry> configuration section are:

transmitter A mandatory callsign referring to aninterface.

via An optionalvia-pathparameter. Only 1 callsign!

source One or more ofinterfacecallsigns for which the telemetry transmission is made.

DIGIPEATER
Theaprx is possible to configure as a AX.25 digipeater with APRS twists.This is done with<digipeater>
configuration section and its subsections.

There can be at most one <digipeater> definition per each transmit capable interface in the system.On a
system with multiple transmitters, this means there can bemultiple digipeaters, each with different behav-
iour rules.

Minimalistic setup for a digipeater will be as follows:

<digipeater>
transmitter $mycall
<source>

source $mycall
</source>

</digipeater>

In minimalistic approach the system does digipeating of packets heard on the$mycall interface back to
same interface. Singlerequirement is that the<interface> block hastx−ok truesetting on it.

In more complicated approaches it is possible to define multiple sources for packets:

• Multiple device ports.

• APRSIS pseudoport, which creates the Tx-iGate functionality.

<digipeater> options
Main-level <digipeater> options are:

• transmitterdefines which interface the digipeater will output to.

• <trace> and<wide> sub-options are explained below.

• <source>sub-option is explained below.

<trace> and <wide> sub-options
The<trace> sub-option has priority over the<wide> sub-option, otherwise they are configured the same
way.

The<trace> sub-option defines which AX.25 address contained keywords are treated with APRS "New-N
paradigm" rules in a way where each processing node always marks its transmitter callsign on the transmit-
ted AX.25 packet address header.

The<wide> sub-option defines which AX.25 address contained keywords are treated with APRS "New-N
paradigm" rules in a way where processing node does not mark its transmitter callsign on the transmitted
AX.25 packet address header.

Av ailable parameters are:

keys A string of comma-separated set of string tokens:
keys "TRACE,WIDE"

Alternative form for this entry is:
keys "TRACE"
keys "WIDE"

maxdone Defines maximum number of redistribution hops that these keywords can have completed when
reaching here. If accounting finds more done, the system will just drop the packet instead of
digipeating it onwards.

2.08 - 2014 March 11 14



aprx(8) SystemManager’s Manual aprx(8)

maxreq Defines maximum number of redistribution hops that these keywords can define. If accounting
finds more requested, the system will just drop the packet instead of digipeating it onwards.

<source> sub-options
Primary definer option issourcewhich gives callsign of an<interface> from which the AX.25 packets are
received for this<source>block.

Av ailable relay−type modes on <source> definitions are:

digipeater Normal AX.25 digipeater behaviour with APRS New-N paradigm support. This is default
mode.

directonly Digipeat only directly heard packets. Usefulfor systems that are designated as "fill-in".
See also "viscous−delay".

third−party Special mode for Tx-iGate.

The ratelimit defines two parameters:averageand limit number of packets sent in 60 seconds. Its defini-
tions can be both in<digipeater> and in digipeater’s <source> sections, and therefore you can limit each
individual source to a max accepted rate as well as define separate rate limits for the transmitter.

Theviscous−delaydefines a number of seconds from 0 (default) maximum of 9 that the source will put the
message on duplicate detector delay processing. All occurrances of same packet per duplicate detector dur-
ing that time will be accounted on duplicate detection, and if at the end of the delay period there are more
than one hit, the packet is discarded. Use delay of 0 seconds for normal digipeater, 5 seconds for a fill-in,
or a Tx-iGate.

A javAPRSSrvr filter-adjunct style rules are possible with thefilter options. Whenyou want multiple fil-
ters, use multiple options with associated parameters:

filter t/m # APRS messaging type packets
filter a/la/lo/la/lo # APRS positional packets within this area

Also negative filters are possible (prefixed with minus character), which upon match cause rejection of the
packet. Filtersare evaluated in definition order, and first matching one will terminate the evaluation. When
no filters are defined, everything is passed thru. When any filter is defined, only those matching non-nega-
tive filters are passed thru, and no default "pass everything else" behaviour exists.

Supported "adjunct filters" are following:

A/latN/lonW/latS/lonE
Area filter, defined as area enclosing within latS/latN and lonW/lonE. Latitude and longitude are
entered as degrees and decimals.

B/call1/call2...
Budlist filter. Supports *-wildcards.

D/digi1/digi2...
Not supported at APRX internal filters

E/call1/call2/...
Not supported at APRX internal filters

F/call/dist_km
Great-circle distance in kilometers from friend’s coordinates. Nowildcarding.
(TODO: check that it really works!)

M/dist Therange around my locationfilter requires that you have defined also the "myloc" configuration
entry. It defines acceptance of positions and messages with senders withindist kilometers of the
"myloc" position.

O/object1/obj2...
Object name filter. Supports *-wildcards.

2.08 - 2014 March 11 15



aprx(8) SystemManager’s Manual aprx(8)

P/aa/bb/cc...
Prefix filter.

Q/con/ana
The Q-construct filter is not supported.

R/lat/lon/dist
Range filter. Latitude and longitude are in degrees and decimals.Distance is in kilometers.No
wildcards.

S/pri/alt/over
Symbol filter

T/..../call/km
Type filter. Couple possible usages:

-t/c Everything except CWOP

t/*/OH2RDY/50 Everything within 50 km of OH2RDY’s last known position

Type code characters are:

* An "all" wild-card.

C A CWOP.

I An ITEM.

M A MESSAGE.

N A NWS message.

O An OBJECT.

Q A QUERY.

S A STATUS response.

T A TELEMETRY packet or parameter message.

U A USERDEF message.

W A WX data packet

U/unproto1/unproto2...
Filters by value in destination address field, supports wildcard.

The <trace> and <wide> sub-options exist also within each <source>. Where such occur, the <source>
specific <trace> sub-option trumps the definition on <digipeater> level, and same with <wide> sub-options.
This allows things like overriding flooding control keywords on source basis, should such be necessary.

A set of regex−filter rules can be used to reject packets that are not of approved kind. Available syntax is:

regex−filter source RE
source address field

regex−filter destination RE
destination address field

regex−filter via RE
any via path field

regex−filter data RE
payload content

The regex−filter exists as ad-hoc method when all else fails.

NOTES: ERLANG
The Erlang is telecom measurement of channel occupancy, and in this application sense it does tell how
much traffic there is on the radio channel.

2.08 - 2014 March 11 16



aprx(8) SystemManager’s Manual aprx(8)

Most radio transmitters are not aware of all transmitters on channel, and thus there can happen a collision
causing loss of both messages. The higher the channel activity, the more likely that collision is.For further
details, refer to statistical mathematics books, or perhaps on Wikipedia.

In order to measure channel activity, the aprx program suite has these built-in statistics counter and sum-
mary estimators.

The Erlag value that the estimators present are likely somewhat underestimatingthe true channel occu-
pancy simply because it calculates estimate of channel bit transmit rate, and thus a per-minute character
capacity. It does not know true frequency of bit-stuffing events of the HDLC framing, nor each transmitter
pre- and port frame PTT times. The transmitters need to stabilize their transmit oscillators in many cases,
which may take up to around 500 ms! The counters are not aware of this preamble-, nor postamble-times.

The HDLC bit stuffing ratio is guessed to be 1:1.025 (1 extra bit every 5 bytes)

NOTES: PROGRAM NAME
Initially this program had nameaprsg-ng, which was too close to another (a less low-tech C++ approach)
program had.

BUGS/WARTS
The Erlang-monitor mechanisms are of rudimentary quality, and can seriously underestimate the channel
occupancy by ignoring pre- and postample transmissions, which can be as high as 50 centiseconds for
preample, and 20 centiseconds for postample! When entire packet takes 50 centiseconds, such preample
alone doubles channel occupancy. A 6pack protocol on serial link (instead of KISS) could inform receiver
better on carrier presense times, however even that underestimates RF power presense (RSSI) signal.
(6pack is not supported.)

On serial lines supports really only 8n1 mode, not at all like: 7e1. On the other hand, there really is no sen-
sible usage for anything but 8n1...

SEE ALSO
Couple web sites:
http://www.aprs2.net/,
http://www.aprs-is.net/,
http://wiki.ham.fi/Aprx.en,
http://ham.zmailer.org/oh2mqk/aprx/aprx-manual.pdf

aprx-stat(8)

AUTHOR
This little piece was written byMatti Aarnio, OH2MQK during a dark and rainy fall and winter of
2007-2008 after a number of discussions grumbling about current breed of available software for APRS
iGate use in Linux (or of any UNIX) platforms. Fall and winter 2009-2010 saw appearance of digipeater
functionality.

Principal contributors and test users include:Pentti Gronlund, OH3BK, Reijo Hakala, OH1GWK. Debian
packaging byKimmo Jukarinen, OH3GNU. Testing of SMACK variant of KISS byPatrick Hertenstein,
DL1GHN. The beacon exec functionality prototype byKamil Palkowiski SQ8KFH.

2.08 - 2014 March 11 17


