
Aprx 2.04 Manual

A special-purpose Ham Radio software
for

UNIX-like environments, including Linux

Manual version 1.00

Aprx 2.04 Manual, version 1.00

By Matti Aarnio, OH2MQK, 2009-2012

2 / 57

Table of Contents
1 What is APRX?.. 5
2 Configuration Examples... 8

2.1 Minimal Configuration of Rx-iGate.. 8
2.2 Minimal Configuration APRS Digipeater.. 9
2.3 Controlling New-n-paradigm... 10
2.4 Filtering APRS Digipeater... 11
2.5 Combined APRS Digipeater and Rx-iGate... 12
2.6 Doing Transmit-iGate.. 13
2.7 Digipeater and Transmit-iGate... 14
2.8 A Fill-In Digipeater.. 15
2.9 Using Multiple Radios... 16
2.10 A Tx-iGate with Multiple Radios on Each Frequency... 17
2.11 A Bi-Directional Cross-band Digipeater.. 18
2.12 Limited Service Area Digipeater... 19
2.13 Limited Service Area Tx-iGate.. 19
2.14 Sending telemetry to radio interface... 20
2.15 DPRS-to-APRS Gateway... 21

3 Configuration in details.. 22
3.1 The “mycall” Parameter.. 22
3.2 Aprx Configuration Parameter Types... 23
3.3 The “<aprsis>” section.. 24
3.4 The “<logging>” section.. 26

3.4.1 The rflog file... 26
3.5 The “<interface>” sections.. 27

3.5.1 The KISS variations... 28
3.5.2 Linux AX25-DEVICE... 28
3.5.3 POSIX serial-port devices, KISS mode, sub-interface 0................................. 29
3.5.4 POSIX serial-port devices, KISS mode, multiple sub-interfaces.................... 30
3.5.5 POSIX serial-port devices, TNC2 mode.. 31
3.5.6 POSIX serial-port devices, DPRS mode... 31
3.5.7 Networked tcp-stream connected terminal devices....................................... 32
3.5.8 NULL-DEVICE... 33

3.6 The “<beacon>” sections.. 34
3.7 The “<telemetry>” sections... 37
3.8 The <digipeater> sections.. 38

3.8.1 The <trace> sub-section.. 39
3.8.2 The <wide> sub-section.. 39
3.8.3 The <source> sub-sections... 40

3.8.3.1 Filter entries... 41
3.8.3.2 Regex-filter entries... 43

3.8.4 Digipeating other than APRS packets... 43
4 Running the Aprx Program.. 45

4.1 Normal Operational Running.. 45
4.1.1 On RedHat/Fedora/SuSE/relatives... 45
4.1.2 On Debian/Ubuntu/derivatives.. 45
4.1.3 Logrotate (Linux systems)... 46

4.2 The aprs.fi Services for Aprx.. 46

3 / 57

4.3 Keywords on <trace> and <wide> sub-sections of <digipeater> sections............. 47
4.4 Effect of “viscous-delay” on a Digipeater.. 48

5 Compile Time Options... 49
5.1 Building Debian package.. 49
5.2 Building RPM package... 49

6 Debugging.. 51
6.1 Testing Configuration.. 51
6.2 Hunting bugs... 52

6.2.1 With gdb.. 52
6.2.2 With valgrind.. 53

7 Colophon.. 55

4 / 57

1 What is APRX?

The Aprx program is for amateur radio APRS™ networking.

The Aprx program is available at:

http://ham.zmailer.org/oh2mqk/aprx/

Discussion forum is at:

http://groups.google.com/group/aprx-software

The Aprx program can do job of at least three separate programs:

1. APRS iGate

2. APRS Digipeater

3. DPRS-to-APRS gateway

The digipeater functionality can also be used for other forms of AX.25 networking, should a
need arise.

The program has ability to sit on a limited memory system, it is routinely run on OpenWRT
machines with 8 MB of RAM and Linux kernel. 128 MB RAM small PC is quite enough for
this program with 64 MB ram disk, a web-server, and much much more.

The program is happy to run on any POSIX compatible platform, a number of UNIXes
have been verified to work, Windows needs some support code to work.

On Linux platform the system supports also seamlessly the Linux kernel AX.25 devices.

This program will also report telemetry statistics on every interface it has. This can be
used to estimate radio channel loading, and in general to monitor system and network
health.

The telemetry data is viewable via APRSIS based services, like http://aprs.fi

5 / 57

http://aprs.fi/
http://groups.google.com/group/aprx-software
http://ham.zmailer.org/oh2mqk/aprx/

The message flows inside the Aprx are as follows, note also where you have filtering op-
portunities.

The Aprx program has been written is maintained by Matti Aarnio, OH2MQK.

Reachable for example at: oh2mqk (at) sral.fi

6 / 57

7 / 57

2 Configuration Examples

Basis of Aprx configuration is in understanding how interfaces and message flows depend
on each other:

2.1 Minimal Configuration of Rx-iGate

To make a receive-only iGate, you need simply to configure:

1. mycall parameter

2. APRSIS network connection

3. Interface for the radio

8 / 57

mycall N0CALL-1

<aprsis>
server rotate.aprs2.net

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS

</interface>

You need to fix the “N0CALL-1” callsign with whatever you want it to report receiving pack-
ets with (it must be unique in global APRSIS network!)

You will also need to fix the interface device with your serial port, network TCP stream
server, or Linux AX.25 device. Details further below.

In usual case of single radio TNC interface, this is all that a receive-only APRS iGate will
need.

You need to look at http://www.aprs2.net/ for possible other suitable servers to use. The
“rotate.aprs2.net” uses global pool of servers, however some regional pool might be better
suited – for example: noam.aprs2.net, euro.aprs2.net, etc.

In most common case of wanting to make an i-gate, you do not want to use APRSIS
service port parameter at all! Using “all traffic” port of 10151, or anything else than “user
port” 14580 is bound to cause all sorts of troubles. This includes excessive APRSIS to
Aprx data traffic, severe bloat of packet history tracking database, etc.

9 / 57

http://www.aprs2.net/

2.2 Minimal Configuration APRS Digipeater

To make a single interface digipeater, you will need:

1. mycall parameter

2. <interface> definition

3. <digipeater> definition

This is not an Rx-iGate as here is no APRSIS section.

Additional bits over the Rx-iGate configuration are highlighted below:

mycall N0CALL-1

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmitter $mycall
<source>

source $mycall
</source>

</digipeater>

The interface must be configured for transmit mode (default mode is receive-only)

Defining a digipeater is fairly simple as shown.

Do not put “alias wide1-1” or any other of that type on the <interface> defi-
nitions! Aprx does understand the “new-n-paradigm” digipeater routing at
fundamental level, and does not need kludges that old AX.25 digipeater sys-
tems did need.

The digipeater handles AX.25 UI frames with APRS packet types using APRS rules, in-
cluding duplicate detection, “new-n-paradigm” processing, etc.

At the same time it also handles all kinds of AX.25 frames as basic AX.25 digipeater
matching next-hop with interface callsigns and aliases (see chapter 3.5 “The “<interface>”
sections“)

10 / 57

2.3 Controlling New-n-paradigm

By default the New-n-paradigm processing uses stems of “TRACE”, “WIDE” and “RELAY”
on which it adds an original request indicating “n” value suffix character, plus actual hop-
by-hop processing counter on SSID field: WIDE2-2 -> WIDE2-1 -> WIDE2*

The Aprx has following default settings on TRACE and WIDE rules. TRACE rules are al -
ways taking precedence.

<digipeater>
transmitter $mycall

<trace>
maxreq 3 # in range: 1 .. 7, default: 4
maxdone 3 # in range: 1 .. 7, default: 4
keys TRACE,WIDE,RELAY

</trace>
<wide>

maxreq 3 # in range: 1 .. 7, default: 4
maxdone 3 # in range: 1 .. 7, default: 4
keys TRACE,WIDE,RELAY

</wide>

<source>
source $mycall

</source>
</digipeater>

The request will be discarded from digipeating, if sum of requested steps or sum of ac-
counted steps exceeds the configured limit (default on both: 4).

That is, if a request packet is received with excessively large WIDEn-N request, like
WIDE7-6, such packet will never be digipeated at all.

There is one exception: If a packet is observed to have no executed steps done when it is
being received by Aprx, then Aprx marks all VIA fields executed (H-bit set), and sends it
back to radio. This is by Bob Bruninga's request, that pathological packets should be
treated so on first appearance on radio network to give sending user a change to observe
that his packet needs fixing. WIDE7-7 -> WIDE7-7*

Note: The Rx-iGate processing will happen in all cases regardless of digipeater filtering.

11 / 57

2.4 Filtering APRS Digipeater

To make a single interface digipeater, you will need:

4. mycall parameter

5. <interface> definition

6. <digipeater> definition

Additional bits over the minimal digipeater are highlighted below:

mycall N0CALL-1

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmitter $mycall
<source>

source $mycall
filter p/prfx # additive filters
filter -p/prfx # substractive filters

</source>
</digipeater>

Without any filter parameters, the system will not inspect packet content to determine if it
should be digipeated or not. It will digipeat everything.

When filter parameters are defined, there are two kinds:

• Additive: Packet matching on this may be eligible for digipeat

• Subtractive: Packet matching on this will be rejected even if it matched on Additive.
In particular an “outside range” or “outside area” filters may be of interest to you.

There can be unlimited number of both kinds of filters.

Note: These filters are applied only on APRS type packets.

12 / 57

2.5 Combined APRS Digipeater and Rx-iGate

Constructing a combined APRS Digipeater and Rx-iGate means combining previously
shown configurations:

mycall N0CALL-1

<aprsis>
server rotate.aprs2.net

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmitter $mycall

<source>
source $mycall

</source>
</digipeater>

It really is as simple as that. When an <aprsis> section is defined, all declared
<interface>s are Rx-iGate:d to APRSIS in addition to what else the system is doing.

13 / 57

2.6 Doing Transmit-iGate

The APRSIS source on a digipeater will enable APRSIS -> RF iGate functionality.

Mandatory parts are “source APRSIS”, and “relay-type third-party”.

Everything else is optional.

mycall N0CALL-1

<aprsis>
server rotate.aprs.net 14580
filter p/prfx # APRSIS filters

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmitter $mycall
<source>

source APRSIS
relay-type third-party
via-path WIDE1-1 # default: none
viscous-delay 5 # prefer RF path
filter p/prfx # additive packet filters
filter -p/prfx # substractive packet fltrs

</source>
</digipeater>

The filtering without any explicit ones follows default Tx-iGate filtering behaviour.

You should not need any additional filter rules.

14 / 57

Available packet filters are described in detail at 3.8.3.1 Filter entries at page 43.

Use of “filter” statements has two variations:

• Additive: These are in addition to what Tx-iGate would relay.

• Subtractive: These reject what Tx-iGate would relay.

There can be unlimited number of both kinds of filters.

The algorithm above has subtle difference of what non-APRSIS source filters do!

If you want to transmit packets that basic Tx-iGate does not already handle (mes-
sages to local users,) then you need to add appropriate additive filter statements on
both the <aprsis> and at source APRSIS -blocks.

15 / 57

2.7 Digipeater and Transmit-iGate

This is fairly simple extension, but shows important aspect of Aprx's <digipeater> defini-
tions, namely that there can be multiple sources!

mycall N0CALL-1

<aprsis>
server rotate.aprs.net 14580

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmitter $mycall
<source>

source $mycall
</source>
<source>

source APRSIS
relay-type third-party

viscous-delay 5
</source>

</digipeater>

Using both the radio port, and APRSIS as sources makes this combined Tx-iGate, and
digipeater.

16 / 57

2.8 A Fill-In Digipeater

Classically a fill-in digipeater means a system that digipeats heard packet only when it
hears it as from first transmission. Usually implemented as “consider WIDE1-1 as your
alias”, but the Aprx has more profound understanding of when it hears something as “di-
rectly from the source”, and therefore there is no need for kludges like that “alias WIDE1-
1”.

<digipeater>
transmitter $mycall
<source>

source $mycall
relay-type directonly

</source>
</digipeater>

Do not put “alias wide1-1” or any other of that type on the <interface> defi-
nitions! Aprx does understand the “new-n-paradigm” digipeater routing in
fundamental level, and does not need kludges that old AX.25 digipeater sys-
tems did need.

With Aprx you can add condition: and only if nobody else digipeats it within 5 seconds.

<digipeater>
transmitter $mycall
<source>

source $mycall
relay-type directonly
viscous-delay 5

</source>
</digipeater>

Note: Use of “viscous-delay” parameter without this being “relay-type directonly” is gener-
ally not a good idea!

Use of “viscous-delay” makes better sense when you have multiple radio receivers in your
digipeater so that even though digipeaters are sending simultaneously, you will still be able
to receive them individually by means of using directional antennas.

A non-zero “viscous-delay” value gets always an additional per packet randomized 0 to 2
second delay. This allows similarly configured Aprx servers to hopefully not transmit all at
same time.

17 / 57

2.9 Using Multiple Radios

There is no fixed limit on number of radio interfaces that you can use, however of them
only one can use the default callsign from “$mycall” macro, all others must have explicite
and unique callsign:

mycall N0CALL-1

<interface>
callsign $mycall
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<interface>
callsign N0CALL-R2
serial-device /dev/ttyUSB1 19200 8n1 KISS

</interface>

Supported interface devices include:

1. On Linux: Any AX.25 network attached devices

2. On any POSIX system: any serial ports available through “tty” interfaces

3. Remote network terminal server serial ports over TCP/IP networking

On serial ports, following protocols can be used:

1. Plain basic KISS: Binary transparent, decently quick.

2. SMACK: A CRC16 two-byte CRC checksum on serial port KISS communication.
Recommended mode for KISS operation.

3. XKISS alias BPQCRC: XOR checksum on KISS. Not recommended because it is
unable to really detect data that has broken during serial port transmission. Slightly
better than plain basic KISS.

4. FLEXNET: Adds a CRC16 on each serial link packet.
Algorithm is not CCITT-CRC16.

5. TNC2 monitoring format, receive only, often transmitted bytes outside printable
ASCII range of characters are replaced with space, or with a dot. Not recommend-
ed to be used!

The KISS protocol variations support multiplexing radios on single serial port.

18 / 57

2.10 A Tx-iGate with Multiple Radios on Each Fre-
quency

Note: If you have only single rx/tx radio per frequency, you don't need these settings at all.

Extending on previous multiple interface example, here those multiple interfaces are used
on a transmit iGate. Transmitter interface is at “$mycall” label, others are receive only:

<interface> # Frequency 144.390 MHz Rx/Tx
callsign $mycall
serial-device ...
tx-ok true
igate-group 1

</interface>

<interface> # Frequency 144.390 MHz Rx-only
callsign N0CALL-R2
serial-device ...
tx-ok false
igate-group 1

</interface>

<digipeater>
transmitter $mycall
<source>

source $mycall
</source>
<source>

source N0CALL-R2
</source>
<source> ## this makes it Tx-iGate

source APRSIS
relay-type third-party

viscous-delay 5
</source>

</digipeater>

Adding there a source of APRSIS will merge in Tx-iGate function, as shown before. It is
trivial to make a multiple receiver, single transmitter APRS Digipeater with this.

The <digipeater> section transmitter has local APRS packet duplicate filter so that receiv-
ing same packet from multiple diversity receiver sources sends out only first one of them.

The igate-group parameter is for Tx-iGate to correctly account “heard on radio channel”
when there are multiple receivers (and separate transmitter) on a given channel. Same
parameter value must be put on all interfaces that are on same frequency. The igate-
group parameter values are integers starting up at 1. Minimum memory usage results
from use of values 1, 2 and 3. If you really need more igate groups than 3, a tunable

19 / 57

2.11 A Bi-Directional Cross-band Digipeater

Presuming having transmit capable radio <interface>s on two different bands, you can
construct a bi-directional digipeater by defining two <digipeater> sections.

<digipeater>
transmitter N0CALL-1
<source>

source N0CALL-1
</source>
<source>

source N0CALL-2
</source>

</digipeater>

<digipeater>
transmitter N0CALL-2
<source>

source N0CALL-1
</source>
<source>

source N0CALL-2
</source>

</digipeater>

Now both transmitters will digipeat messages heard from either radio.

You will probably want more control parameters to limit on how much traffic is relayed from
one source to other, more of that in the detail documentation.

20 / 57

2.12 Limited Service Area Digipeater

A digipeater that will relay only packets from positions in a limited service area can be
done by using filtering rules:

<digipeater>
transmitter N0CALL-1
<source>

source N0CALL-1
relay-type directonly
filter t/m # All messages (position-less)
filter a/60/23/59/25.20
filter a/60.25/25.19/59/27

</source>
</digipeater>

This example is taken from a limited service area digipeater on a very high tower in Hel-
sinki, Finland. The coordinates cover Gulf of Finland, and northern Estonia. Especially it
was not wanted to relay traffic from land-areas, but give excellent coverage to sail yachts.

Available filters are described in detail at 3.8.3.1 Filter entries at page 43.

2.13 Limited Service Area Tx-iGate

A transmit igate with limited service area:

 <digipeater>
transmitter OH2RAA-1
<source>
 source APRSIS
 relay-type third-party

 # Substractive filters applied on recipients
 # with known position
 filter -r/60.00/25.00/-150 # not outside 150 km of Helsinki
 filter -r/61.50/24.75/50 # and not within 50 km of Tampere
</source>

 </digipeater>

Available filters are described in detail at 3.8.3.1 Filter entries at page 43.

21 / 57

2.14 Sending telemetry to radio interface

The Aprx is always collecting radio interface statistics from all of its interfaces.

It sends that data out to APRS-IS, but in case you do not have APRS-IS connection, like in
a remote digipeater, it can also be transmitted on radio:

<telemetry>
transmitter $mycall
via WIDE1-1
source $mycall

</telemetry>

You can define multiple <telemetry> sections with different transmitters.

On each <telemetry> section you can define multiple sources.

There is no default “via” path, if something is needed to reach near-by iGates, add some.

22 / 57

2.15 DPRS-to-APRS Gateway

To make a DPRS-to-APRS gateway, all you need is to define an <interface> source for
DPRS data streams, and a <digipeater> where that DPRS interface is defined as one of
<source>s:

<interface>
serial-device DPRS
callsign N0CALL-DG

</interface>

<interface>
tcp-device 192.168.1.1 9500 DPRS
callsign N0CALL-D2

</interface>

<digipeater>
transmitter N0CALL-1
<source>

source N0CALL-DG
relay-type third-party
via-path foo,bar
#viscous-delay N # in range: 0..9, default: 0
#ratelimit 60 120
#regex-filter ...
#filter ...
#<trace>
...
#</trace>
#<wide>
...
#</wide>

</source>
<source>

source N0CALL-D2
relay-type third-party
...

</source>
</digipeater>

This shows also, how to use so called D-RATS data stream reflector as source for D-PRS
data stream.

23 / 57

3 Configuration in details

The Aprx configuration file uses sectioning style familiar from Apache HTTPD.

These sections are:

1. mycall

2. <aprsis>

3. <logging>

4. <interface>

5. <beacon>

6. <telemetry>

7. <digipeater>

Each section contains one or more of configuration entries with case depending type of
parameters.

3.1 The “mycall” Parameter

The mycall entry is just one global definition to help default configuration to be minimalis-
tic by not needing copying your callsign all over the place in the usual case of single radio
interface setup.

24 / 57

3.2 Aprx Configuration Parameter Types

The Aprx configuration has following types of parameters on configuration entries:

• Parameters can be without quotes, when such are not necessary to embed spaces,
or to have arbitrary binary content.

• Any parameter can be quoted by single or double quotes: “ .. “ ' .. '

• Any quoted parameter can contain \-escaped codes. Arbitrary binary bytes are en-
codable as “\xHH”, where “HH” present two hex-decimal characters from “\x00”
to “\xFF”. Also quotes and backslash can be backslash-escaped: “\”” “\\”

• Arbitrary binary parameter content is usable only where especially mentioned, oth-
erwise at least “\x00” is forbidden.

• UTF-8 characters are usable in parameters with and without quotes.

• Callsign definitions (see below)

• Interval definitions (see below)

• Very long parameter lines can be folded on input file by placing a lone \-character
at the end of the configuration file text line to continue the input line with contents of
following line, for unlimited number of times.

The interval-definition is convenience method to give amount of time in other units, than in-
teger number of seconds. An interval-definition contains series of decimal numbers fol-
lowed by a multiplier character possibly followed by more of same. Examples:

2m2s
1h

The multiplier characters are:

1. s (S): Seconds, the default

2. m (M): Minutes

3. h (H): Hours

4. d (D): Days

5. w (W): Weeks

The callsign parameters are up to 6 alphanumeric characters followed by optional minus
sign (“-”, the “hyphen”) and optional one or two alphanumeric characters. Callsigns are in-
ternally converted to all upper case form on devices. Depending on usage locations, the
“SSID” suffix may be up to two alphanumeric characters, or just plain integer from 0 to 15.
That latter applies when a strict conformance to AX.25 callsigns is required. Callsign pa-
rameter with suffix “-0” is canonicalized to a string without the “-0” suffix.

25 / 57

3.3 The “<aprsis>” section

The <aprsis> section defines communication parameters towards the APRSIS network.

When you define <aprsis> section, all configured <interface>s will be Rx-iGate:d to
APRSIS! Thus you can trivially add an Rx-iGate to a <digipeater> system, or to make a
Rx-iGate without defining any <digipeater>.

The only required parameter is the server definition:

<aprsis>
server rotate.aprs2.net 14580

</aprsis>

where the port-number defaults to 14580, and can be omitted.

You need to look at http://www.aprs2.net/ for possible other suitable servers to use. The
“rotate.aprs2.net” uses global pool of servers, however some regional pool might be better
suited – for example: noam.aprs2.net, euro.aprs2.net, etc.

You may also define multiple servers, if you absolutely want to push your data to specific
ones. The connection will be established with one of them, and when it fails, then another
one is tried:

<aprsis>
server server1.aprs2.net 14580

</aprsis>
<aprsis>

server server2.aprs2.net 14580
</aprsis>

Use of other APRSIS server port than 14580 will likely do things that you absolutely do not
want to happen. This includes excessive APRSIS to Aprx packet traffic, severe bloat of
packet history tracking database, etc.

Additional optional parameters are:

• login callsign

• heartbeat-timeout interval-definition

• filter adjunct-filter-entry

The login defaults to global $mycall. Set it only if you login with other value than that
stored on “mycall” parameter.

26 / 57

http://www.aprs2.net/

Adding “heartbeat-timeout 1m” will detect failure to communicate with APRSIS a bit
quicker than without it. The current generation of APRSIS servers writes a heartbeat mes-
sage every 20 seconds, and a two minute time-out on their waiting is more than enough:

<aprsis>
server rotate.aprs2.net
heartbeat-timeout 1m

</aprsis>

The “filter ...” entries are concatenated, and given to APRSIS server as adjunct filter defi-
nitions. For more information about their syntax, see:

http://www.aprs-is.net/javAPRSFilter.aspx

NOTE: For an Rx/Tx-iGate you do not need any additional explicit filter definitions. The
option exists just in case you have some unusual reason needing them.

27 / 57

http://www.aprs-is.net/javAPRSFilter.aspx

3.4 The “<logging>” section

The Aprx can log every kind of event happening, mainly you will be interested in rflog, and
aprxlog.

Note: The erlangfile related bits are dependent on software being compiled using “--with-
erlangstorage” option, which is not the default way in Aprx-2 series.

There is also a possibility to store statistics gathering memory segment on a filesystem
backing store, so that it can persist over restart of the Aprx process. This is possible even
on a small embedded machine (like OpenWRT), where statistics “file” resides on a ram-
disk. This way you can alter configurations and restart the process, while still continuing
with previous statistics dataset. Without the backing store this will cause at most 20
minute drop-off of statistics telemetry data.

Configuration options are:

• aprxlog filename

• rflog filename

• dprslog filename

• pidfile filename

• erlangfile filename

• erlang-loglevel loglevel

• erlanglog filename

Commonly you want setting aprxlog, and rflog entries. The erlangfile, and pidfile entries
have compile time defaults, and need not to be defined unless different locations are want-
ed.

3.4.1 The rflog file

The rflog file has following format:

• Date + Time stamp to millisecond

• Interface callsign for radio ports, or 'APRSIS' for data coming up from there

• 'R' or 'T' depending on the direction

• "TNC2 format" printout of the received data. If there are embedded NUL bytes,
they are included in the printout.

28 / 57

3.5 The “<interface>” sections

The <interface> sections define radio interfaces that the Aprx communicates with.

There are three basic interface device types:

1. Linux AX.25 devices (ax25-device)

2. Generic POSIX serial ports (serial-device)

3. Remote network serial ports (tcp-device)

The serial port devices can be reading TNC2 style monitoring messages (and be unable to
transmit anything), or communicate with a few variations of KISS protocol (and transmit).
On KISS protocols you can use device multiplexing, although cases needing polling for re-
ception are not supported. Variations of KISS protocol are described separately.

On Linux systems the kernel AX.25 network devices are also available, and Aprx inte-
grates fully with kernel AX.25 networking, however this is done with Linux /etc/ax25/ax-
ports file by only referring on AX.25 callsigns on interfaces.

Each interface needs a unique callsign and to help the most common case of single radio
interface, it defaults to one defined with mycall entry. The interface callsigns need not to
be proper AX.25 callsigns on receive-only serial/tcp-device interfaces, meaning that a N0-
CALL-R0 .. R9 .. RA .. RZ are fine examples of two character suffixes usable on such re-
ceivers.

As there are three different devices, there are three different ways to make an <interface>
section.

29 / 57

3.5.1 The KISS variations

The Aprx knows four variations of basic Chepponis/Karn KISS protocol, listed below in
preference order:

1. Stuttgart Modified Amateur-radio-CRC-KISS (SMACK)

2. FLEXNET KISS

3. BPQCRC alias XKISS

4. Plain basic KISS

The SMACK uses one bit of CMD byte to indicate that it is indeed SMACK format of KISS
frame. The bit in question is highest bit, which is highest sub-interface identity bit. Thus
SMACK is not able to refer to sub-interfaces 8 to 15 of original KISS protocol. On the other
hand, hardly anybody needs that many! It uses CRC-16 algorithm (not the same as
CCITTT-CRC used on AX.25 HDLC frame,) and is capable to detect loss or insert of sin-
gle bytes in frame as well as single and sometimes also multiple bit flips in correct number
of bytes within the frame.

The FLEXNET is a KISS protocol variation alike that of SMACK, but control byte has
slightly different bit meanings. The FLEXNET has its own CRC checksum at the last two
bytes of the KISS frame.

The BPQCRC alias XKISS uses single byte containing XOR of all bytes within the data
frame (before the KISS frame encoding is applied/after it is taken off.) This is very weak
checksum, as it does not detect addition/removal of 0x00 bytes at all, and is unable to de-
tect flipping of same bit twice within the frame.

The plain basic KISS is adaptation of internet SLIP protocol, and has no checksum of any
kind in the framing interface.

If at all possible, do choose to use SMACK!

It is available for TNC2 clones from:

http://www.symek.com/g/tnc2firmware.html

http://www.symek.com/down/smack.zip

Something else entirely would be 6PACK – which interleaves bulk packet data and low la-
tency real time event data bytes on serial link. The 6PACK is not supported in Aprx itself,
but a Linux system can interface with 6PACK TNC, and present it through AX.25 network.

3.5.2 Linux AX25-DEVICE

<interface>
ax25-device callsign
tx-ok boolean
alias RELAY,TRACE,WIDE

</interface>

30 / 57

http://www.symek.com/down/smack.zip
http://www.symek.com/g/tnc2firmware.html

The callsign parameter must be valid AX.25 callsign as it refers to Linux kernel AX.25 de-
vice callsigns. Such Linux kernel device does not need to be active at the time the Aprx
program is started, the Aprx attaches itself on it dynamically when it appears, and detach-
es when it disappears.

The interface alias entry can be defined as comma-separated lists of AX.25 callsigns, or
as multiple alias entries. Default set is above shown RELAY,TRACE,WIDE. If you define
any alias entry, the default set is replaced with your definitions. (Do not define “WIDE1-1”
type kludge aliases that old TNC digipeaters seem to need.)

3.5.3 POSIX serial-port devices, KISS mode, sub-interface 0

<interface>
serial-device devicepath speed KISS
tx-ok boolean
callsign callsign
initstring “init-string-content”
timeout interval-definition
alias RELAY,TRACE,WIDE

</interface>

You can use a binary-transparent AX.25 radio modem on a KISS type connection. The
above example shows case of KISS modem on sub-interface 0.

The tx-ok entry (default value: “false”) controls whether or not the interface is capable to
transmit something.

The callsign entry defines system wide unique identity for the radio port, and for transmit
capable interfaces it must be valid AX.25 callsign form, for receive-only ports it can be any-
thing that APRSIS accepts.

The initstring is a byte-string to be sent to the kiss devices. You can use this to send ini -
tialization values to KISS modems. Difficulty is that you must manually encode here ev-
erything, including KISS framing.

Interface alias entry can be issued as comma-separated lists of AX.25 callsigns, or as mul-
tiple alias entries. Default set is above shown RELAY,TRACE,WIDE. If you define any
alias entry, the default set is replaced with your definitions. (Do not define “WIDE1-1” type
kludge aliases that old TNC digipeaters seem to need.)

The speed is one of pre-defined standard baud rate speeds: 1200, 1800, 2400, 4800,
9600, 19200, 38400, 57600, 115200, 230400, 460800, 500000, 576000. Probably not all
of them are supported in your platform, but at least the ones up to 38400 should be quite
common.

31 / 57

3.5.4 POSIX serial-port devices, KISS mode, multiple sub-
interfaces

<interface>
serial-device devicepath speed KISS
initstring “init-string-content”
timeout interval-definition
<kiss-subif 0>

tx-ok boolean
callsign callsign

alias RELAY,TRACE,WIDE
</kiss-subif>
<kiss-subif 1>

tx-ok boolean
callsign callsign

alias RELAY,TRACE,WIDE
</kiss-subif>

</interface>

You can use a binary-transparent AX.25 radio modem on a KISS type connection. The
above example shows case of KISS modem on sub-interface 0.

The initstring is a byte-string to be sent to the kiss devices. You can use this to send ini -
tialization values to KISS modems. Difficulty is that you must manually encode here ev-
erything, including KISS framing.

You can set a timeout parameter to close and reopen the device with optional initstring
sending, which will happen if there is interval-definition amount of time from last received
data on the serial port. Suitable amount of time depends on your local network channel,
somewhere busy a 5 minutes is quite enough (“5m”), elsewhere one hour may not be
enough (“60m”).

The <kiss-subif N> sectioning tags have N in range of 0 to 7 on SMACK mode, and 0 to 15
on other KISS modes. On each <kiss-subif N> sub-sections you can use:

• The tx-ok entry (default value: “false”) to control whether or not the sub-interface is
capable to transmit something.

• The callsign entry to give unique identity for the sub-interface. For transmit capable
sub-interfaces it must be of valid AX.25 callsign form, for receive-only ports it can
be anything that APRSIS accepts.

• The sub-interface alias entry can be issued as comma-separated lists of AX.25 call-
signs, or as multiple alias entries. Default set is above shown
RELAY,TRACE,WIDE. If you define any alias entry, the default set is replaced with
your definitions. (Do not define “WIDE1-1” type kludge aliases that old TNC digi-
peaters seem to need for a “fill-in digi”, see 2.8 A Fill-In Digipeater for Aprx's way of
doing it.)

32 / 57

3.5.5 POSIX serial-port devices, TNC2 mode

<interface>
serial-device devicepath speed TNC2
callsign callsign
timeout interval-definition
initstring “init-string-content”

</interface>

If you absolutely positively must have a TNC2 monitoring mode radio modem, then it can
be used for passive monitoring of heard APRS packets, but beware that such radio
modems usually also corrupt some of heard APRS packets, and that this type of interface
is not available for transmit mode. Only mandatory entry is “serial-device”, others have us-
able defaults.

The callsign entry defines unique identity for the radio port, but it need not to be valid
AX.25 callsign.

You can set a timeout parameter to close and reopen the device with optional initstring
sending, which will happen if there is interval-definition amount of time from last received
data on the serial port. Suitable amount of time depends on your local network channel,
somewhere busy a 5 minutes is quite enough (“5m”), elsewhere one hour may not be
enough (“60m”).

You can use the initstring to issue a binary byte stream to the serial port to initialize the ra-
dio modem, if necessary.

3.5.6 POSIX serial-port devices, DPRS mode

<interface>
serial-device devicepath speed DPRS
callsign callsign
timeout interval-definition
initstring “init-string-content”

</interface>

This enables receive-only DPRS to APRSIS Rx-iGate in case APRSIS connection is de-
fined.

This interface can also be used as a source on <digipeater> to enable DPRS-to-APRS RF
gateway.

33 / 57

3.5.7 Networked tcp-stream connected terminal devices

<interface>
tcp-device hostname-or-ip-address portnumber KISS

....................
</interface>

<interface>
tcp-device hostname-or-ip-address portnumber TNC2

....................
</interface>

<interface>
tcp-device hostname-or-ip-address portnumber DPRS

....................
</interface>

These work identical to local physical serial ports described above.

The hostname-or-ip-address and portnumber point to remote terminal server, where re-
mote serial port is configured to attach on a radio modem. The connection must be such
that no extra bytes are added on the datastream, nor any byte codes are considered com-
mand escapes for the terminal server. That is, plain TCP, no TELNET service!

Recommendation is to use IP address literals instead of domain names.

Both IPv4 and IPv6 protocols are supported, where platform supports them.

34 / 57

3.5.8 NULL-DEVICE

A development tool, and by default a “transmitter device”.

<interface>
null-device callsign

tx-ok true
alias RELAY,TRACE,WIDE
</interface>

The callsign parameter is just any string within relaxed AX.25 “callsign-ssid” rules.

35 / 57

3.6 The “<beacon>” sections

You can define multiple <beacon> sections each defining multiple beacon entries.

Beacons can be sent to radio only, to aprsis only, or to both. Default is to both.

You can configure beacons as literals, and also to load beacon content from a file at each
time it is to be transmitted. That latter allows external program, like weather probes, to
feed in an APRS weather data packet without it needing to communicate with Aprx via any
special protocols, nor make AX.25 frames itself.

The <beacon> section has following entries:

• cycle-size interval

• beaconmode { aprsis | both | radio }

• beacon ...

The cycle-size entry is global setter of beacon transmission cycle. Default value is 20
minutes, but if you want to beacon 3 different beacons on average 10 minutes in between
each, then use interval value: 30m

The beaconmode setting defaults to both at the start of <beacon> section,, and affects
beacon entries following the setting, until a new setting. The aprsis setting will send fol-
lowing beacons only to APRSIS, and the radio setting will send following beacons only to
radio interface(s).

The beacon entry parameters:

• interface interface-callsign

• srccall callsign

• dstcall callsign

• via “viapath”

• timefix

... continued ...

36 / 57

The interface parameter sets explicit interface on which to send this beacon. If no to
parameter is given, then the beacon is sent on all interfaces.

The srccall parameter sets beacon packet source callsign, and it gets its default value
from transmit interface's callsign. In single tx case you do not need to set this. In multi-tx
case you may want to set this.

The dstcall parameter sets beacon packet destination callsign, default value is program
release version dependent, but possible override could be like: “APRS”.

The via parameter adds fields on beacon AX.25 VIA path. Default is none, example val -
ue would be like: via “WIDE1-1”

The timefix parameter sets a flag to modify transmitted APRS packets that have a time
stamp field (two kinds of basic position packets, and objects.) Set this only if your machine
runs with good quality NTP time reference.

Then either of following two:

• raw “APRS packet text”

• file filepath

or a combination of following:

• One of following three (default is type “!”)

◦ type “single-character-type”

◦ item “item-name”

◦ object “object-name”

• lat latitude

• lon longitude

• symbol “two-character-symbol”

• comment “text” (optional)

There are three different ways to define beacon data: file, raw, and third way is a combi-
nation of a number of data parameters. The third way has a benefit of being able to vali -
date packet structure at configuration time.

The file parameter is one alternate way to followed by a pathname to local file system at
which an other program can place APRS packet content to be sent out at next time it is en-
countered in the beacon cycle. The Aprx program reads it at beacon time for transmitting.

The raw parameter is followed by full raw APRS packet text. The packet data is not vali -
dated in any way!

... continued ...

37 / 57

The multi-component packet data content construction is done with following parameters:

The type parameter defaults to “!” and can be set to any of: "!", "=", "/", "@".

The item/object parameter sets name field for item and object type packets (“;” and
“)”). There is no default value.

The symbol parameter sets two character APRS symbol on the beaconed packet. It has
no default value.

The lat parameter sets (and validates) APRS format latitude coordinate: ddmm.mmX
where X is 'S' or 'N' indicating latitude hemisphere. There is no default value.

The lon parameter sets (and validates) APRS format longitude coordinate: dddmm.mmX
where X is 'E' or 'W' indicating longitude hemisphere. There is no default value.

The comment parameter sets tail of the packet where an arbitrary text can appear, you
can use UTF-8 characters in there. There is no default value, use of this field is optional.

In order to construct a packet with these multi-component fields, you must use at least pa-
rameters: symbol, lat, lon.

Some examples:

<beacon>
 # Load beacon message content from a file:
 beacon file /tmp/wxbeacon.txt

 # Define fixed beacon from components:
 beacon via TRACE1-1 \

symbol "R&" lat "6016.35N" lon "02506.36E" \
comment "Aprx v1.97 - a Digi + Rx-iGate"

 # When all else fails, “raw” can be used:
 beacon raw "!6016.30NR02506.36E&Aprx v1.97 - a Digi + Rx-iGate"

 # Define an OBJECT for a local voice repeater:
 beacon object "OH2RAY" \

symbol "/r" lat "6044.09N" lon "02612.79E" \
comment "434.775MHz TOFF -1600kHz R50k OH2RAY"

</beacon>

38 / 57

3.7 The “<telemetry>” sections

The Aprx is always collecting interface statistical data on all of its interfaces.

By default that data is sent out only to APRS-IS. If there is no APRS-IS connectivity, noth-
ing is sent in default case.

Defining a <telemetry> section can let you control alternate transmission to radios:
<telemetry>

Select where to transmit
transmitter $mycall

Optional digipeat path for transmission to near by IGates
via WIDE1-1

Multiple sources permitted
source $mycall
source N0CALL-2

</telemetry>

The telemetered source ports must have valid AX.25 callsigns. Pure APRS-IS telemetry is
far more permissive in this regard.

If you want telemetry to multiple radio transmitters, define multiple <telemetry> sections.

The transmission will have same data content and frequency as APRS-IS transmissions
have: Telemetry packet once per 20 minutes, associated label packets every 2 hours, but
with 2 minute offset to telemetry data.

Note: If you define multiple sources, all the telemetry records are sent “rapid fire” one after
another without any delay! This does not harm APRS-IS, but may cause packet drops on
radio transmission.

Telemetry related data labels are sent at different time than data records, but they too
cause “rapid fire” clusters on radio – one label per source. Each of 3 kinds of labels are
sent out with 2 hour intervals in between them.

Development assumption has been that big multi-receiver systems have also internet
connectivity and won't transmit telemetry over radio, or as a compromise they send RF
telemetry only regarding digipeater transmitter port(s).

39 / 57

3.8 The <digipeater> sections

With Aprx you can define multiple <digipeater> sections, each to their unique transmitter.

The Aprx will apply full set of controls on APRS type packets, but it will handle also plain
AX.25 digipeat of other types of AX.25 packets.

At each <digipeater> section you can define multiple <source> sub-sections so that traffic
from multiple sources are sent out with single transmitter.

The Aprx implements duplicate checking per each transmitter, and if same message is re-
ceived via multiple (diversity) receivers, only one copy will be transmitted.

The Aprx implements also basic AX.25 digipeater for non-APRS frames, where radio inter-
face callsign (and interface aliases) is matched against first AX.25 address header VIA
field without its H(as been digipeated)-bit set.

The structure of each <digipeater> section is as follows:

<digipeater>
transmitter callsign
ratelimit 60 120
<trace>

... (defaults are usually OK)
</trace>
<wide>

... (defaults are usually OK)
</wide>
<source>

source callsign
... (defaults are usually OK)

</source>
... (more sources can be defined)

</digipeater>

The transmitter entry defines callsign of transmitter radio port to be used for this section.
There is no default, but macro $mycall is available.

The ratelimit gives average and upper limit on number of packets to be relayed per
minute out on this transmitter interface. The system tracks number of packets sent per 5
second timeslots using “token bucket filter” algorithm. Default values are 60/120. Maxi-
mum values are 300/300. (Default limit saturates 1200 bps AFSK channel, but 9600 bps
channel has some slack.)

The <trace> sub-section is available both at <digipeater> and at <source> levels. Source
specific settings override digipeater-wide settings. More details below. The <trace> set-
tings are looked at before <wide> settings, thus same key value in both

The <wide> sub-section is alike <trace> sub-section, more details below.

The <source> sub-sections define sources that this digipeater instance receives its pack-
ets from. Same source devices can feed packets to multiple digipeaters.

40 / 57

3.8.1 The <trace> sub-section

<trace>
maxreq 3 # in range: 1 .. 7, default: 4
maxdone 3 # in range: 1 .. 7, default: 4
keys TRACE,WIDE,RELAY

</trace>

The <trace> block settings can be at <digipeater> level, and at <source> sub-level. The
<digipeater> level has above listed default values.

The <source> sub-level <trace> instance is used at first to check what to do to packet. If
there is no match at <source> sub-level, the <digipeater> level <trace> entry is checked.
If neither matched, then <wide> entries (see below) are used in similar manner.

The maxreq and maxdone entries (both default to 4) limit the number of requested digi-
peat hops to listed amount, and in case of some of those requests being done, also limit
the number of executed hops.

The keys entry defines multiple “new-n paradigm” style keyword stems that are matched
for the first VIA field without H-bit set. See detailed explanations at 4.3 “Keywords on
<trace> and <wide> sub-sections of <digipeater> sections.”

The system has a special “heard direct” behaviour when maxreq or maxdone is reached or
exceeded, or when a new-n paradigm style “KEYn-N” entry has N > n: The system will in-
sert itself at first VIA slot, and mark original request VIA data with H-bits (“digipeating com-
pleted”) and transmit the resulting packet. If packet was not recognized as “heard direct”,
then it is silently dropped.

3.8.2 The <wide> sub-section

<wide>
maxreq 3 # in range: 1 .. 7, default: 4
maxdone 3 # in range: 1 .. 7, default: 4
keys TRACE,WIDE

</wide>

The <wide> sub-section keywords are matched only, if <trace> sub-section keywords have
not matched. Match on the <wide> sub-section keywords means that no “trace” behaviour
is done on outgoing digipeated packet's AX.25 address fields, only decrementing the re-
quest counts.

Otherwise same notes apply as on <trace> sub-section.

41 / 57

3.8.3 The <source> sub-sections

<source>
source callsign
#via-path foo # for “source APRSIS” only!
relay-type keyword
viscous-delay N # in range: 0..9, default: 0
ratelimit 60 120
regex-filter ...
filter ...
<trace>

...
</trace>
<wide>

...
</wide>

</source>

The source entry uses a callsign reference to <interface> sections. There is one spe-
cial built-in interface in addition to those that you define: “APRSIS”, which is basis of Tx-
iGate implementation.

The <trace> and <wide> sub-sub-sections define source specific instances of respec-
tive processing rules. This way a source on 50 MHz band can have special treatment
rules for <trace>/<wide>, while <digipeater> wide rules are used for other sources. Pres-
ence of <trace>/<wide> sub-sub-sections overrides respective <digipeater> section level
versions of themselves.

The via-path is used only on APRSIS case, where it defines the VIA-path for outgoing 3rd-
party frame, and it defaults to empty VIA-path.

The ratelimit gives average and upper limit on number of packets to be relayed per
minute from this source interface to the digipeater where this belongs to. System tracks
number of packets sent per 5 second timeslots using “token bucket filter” algorithm. De-
fault values are 60/120. Maximum values are 300/300. Suggested value is at most as high
as the interface's ratelimit value, preferably less than that. (Default limit saturates 1200
bps AFSK channel, but 9600 bps channel has some slack.)

The relay-type defines how the digipeater modifies AX.25 address fields it passes
through. Available values are: third-party (“3rd-party”) for APRSIS Tx-iGate use only,
digipeated (default value,) and directonly for special fill-in digipeaters.

The viscous-delay is an auxiliary parameter intended for relay-type directonly digi-
peaters, and digipeaters with Tx-iGate. It defines number of seconds that this digipeater
will hold on the packet, and account any other possible arrival of same packet by means of
comparing early all packets on transmitter specific duplicate filter. If at the end of the delay
this is still unique observation of the packet, then it will be sent out. Using the viscous-de-
lay on APRSIS sources gives RF network a small change to have the same packet reach
this node. Using the viscous-delay on normal digipeater is not recommended.

42 / 57

A non-zero viscous-delay value gets always an additional per packet randomized 0 to 2
second delay. This allows similarly configured Aprx servers to hopefully not transmit all at
same time.

The filter entries define javAPRSSrvr style adjunct filter entries that must pass through
the arriving packet. Further details below.

The regex-filter supplies an ad-hoc mechanism to reject matching things from packets.
Further details below.

3.8.3.1 Filter entries

Only following of javAPRSSrvr adjunct filter like entries are supported on <source> sub-
sections:

• A/latN/lonW/latS/lonE
• A/latN/lonW/latS/lonE/-
• B/call1/call2...
• F/call/dist_km
• F/call/-dist_km
• O/object1/object2...
• P/aa/bb/cc...
• R/lat/lon/dist_km
• R/lat/lon/-dist_km
• S/pri/alt/overlay
• T/.../call/km
• T/.../call/-km
• U/unproto1/unproto2...

For more information about their syntax, see:
http://www.aprs-is.net/javAPRSFilter.aspx

Additional feature is “outside range” or “outside area” forms where radial distance (range)
is expressed as negative number of kilometers, or area coordinate definition is followed by
tail of “/-”:

• A/latN/lonW/latS/lonE/-
• F/call/-dist_km
• R/lat/lon/-dist_km
• T/.../call/-km

These make most sense, when used on Tx-iGate APRSIS substractive filter. Then you
can define "do not serve anybody that is more than 150 km from this coordinate pair:
filter -r/lat/lon/-150"

43 / 57

http://www.aprs-is.net/javAPRSFilter.aspx

Filter usage rules:

1. These filters apply only on APRS packets. Digipeating other types of packets is not
subject to these filters.

2. If there are no filters, then arriving APRS packet is always accepted.

3. You can define as many filter entries as you want.

4. The filter entries are evaluated in definition order.

5. The filter entries apply only on the <source> sub-section they are in. Different
<source> sub-sections have separate filtering rule sets.

6. When you define filter entries, only those packets matching a filter rule are passed
on.

7. With multiple filter definitions, a match terminates filter chain evaluation, non-match
continues to next filter entry.

1. Prefixing a filter entry with minus (“-”) will cause the match to reject the packet.

2. Rejection filters are evaluated after acceptance filters, thus you can reject some-
thing that e.g. area acceptance accepted.

8. If none of filters matched, then:

1. the packet will be rejected on RF->RF digipeating

2. the Tx-IGate passes messages onwards with its own algorithm when no filter
matched.

Example at “Limited Service Area Digipeater” used these settings:

filter t/m # All messages (position-less)
filter a/60.00/23.00/59.00/25.20
filter a/60.25/25.19/59.00/27.00

Example of “Limited Service Area Tx-iGate” used these settings:

filter -r/60.00/25.00/-150 # not outside 150 km of Helsinki
filter -r/61.50/24.75/50 # and not within 50 km of Tampere

44 / 57

3.8.3.2 Regex-filter entries

A set of regex-filter rules can be used to reject packets that are not of approved kind.
Available syntax is:

• regex-filter source RE
• regex-filter destination RE
• regex-filter via RE
• regex-filter data RE

The keywords “source”, “destination”, “via”, “data” tell which part of the AX.25 packet the
following regular expression is applied on. Defining multiple entries of same keyword will
be tested in sequence on that data field. First one matching will terminate the matcher and
cause the packet to be rejected.

The regex-filter exists as ad-hoc method when all else fails.

3.8.4 Digipeating other than APRS packets

The Aprx can also be used as generic AX.25 RF digipeater.

The Aprx will handle RF->RF digipeating of other than APRS packets by matching “next
hop” (via) field matching on transmitter callsign or transmitter interface aliases.

The “new-n-paradigm” “WIDEn-N” rules do not apply for other than APRS packets.

Digipeater ratelimit filter applies to all kinds of packets on digipeater sources and transmit-
ters on per interface basis.

The regex filters can be applied to block packets, they work on all kinds of packets.

45 / 57

This page is intentionally left blank

46 / 57

4 Running the Aprx Program

Following talks about how the pre-compiled binaries for Debian and RedHat style systems
are run. If you have some other platform, you must adapt these instructions in applicable
ways to your environment.

4.1 Normal Operational Running

The Aprx program is intended to be run without any command line parameters, but some
are available for normal operation:

• -f -- tell location of runtime aprx.conf file, if default is not suitable for some reason.

• -L -- log a bit more on aprx.log

Depending on your host system, you may need to setup init-script and its associated start-
up parameter file.

4.1.1 On RedHat/Fedora/SuSE/relatives

After doing installation on this type of machine either from pre-compiled binary package, or
from sources:

In order to use package contained startup scripts, you will need to edit the
/etc/sysconfig/aprx to contain following:

STARTAPRX="yes"
DAEMON_OPTS=""

After installation you may need to execute following two commands as root:

chkconfig aprx on
service aprx start

4.1.2 On Debian/Ubuntu/derivatives

After doing installation on this type of machine either from pre-compiled binary package, or
from sources:

In order to use package contained startup scripts, you will need to edit the /etc/de-
fault/aprx to contain following:

STARTAPRX="yes"
DAEMON_OPTS=""

47 / 57

After installation you may need to execute following two commands as root:

update-rc.d aprx defaults 84
/etc/init.d/aprx start

The second command here should be postponed until the configuration is completed.

4.1.3 Logrotate (Linux systems)

You will also need logrotate service file. This one is handy to rotate your possible logs
so that especially embedded installations should never overflow their RAM-disks with use-
less log files. The file in question is something like this:

/var/log/aprx/aprx-rf.log /var/log/aprx/aprx.log /var/log/aprx/erlang.log {
 monthly
 rotate 24
compress
 missingok
 notifempty
 create 644 root adm
}

4.2 The aprs.fi Services for Aprx

The Aprx sends telemetry packets for each active radio interface, and aprs.fi can plot them
to you in time-series graphs per APRS specification 1.0.1 Telemetry packet rules.

These graphs are:

1. Channel received Erlang estimate (based on received bytes, not actual detected
higher RSSI levels)

2. Channel transmitted Erlang estimate (based on number of transmitted bytes, not
actual PTT time)

3. Number of received packets on channel

4. Number of packets that receiving iGate function discarded for one reason or an-
other

5. Number of transmitted packets

All represent counts/averages scaled to be over 10 minute time period.

48 / 57

4.3 Keywords on <trace> and <wide> sub-sections
of <digipeater> sections.

<trace>
maxreq 3 # in range: 1 .. 7, default: 4
maxdone 3 # in range: 1 .. 7, default: 4
keys TRACE,WIDE,RELAY

</trace>

<wide>
maxreq 3 # in range: 1 .. 7, default: 4
maxdone 3 # in range: 1 .. 7, default: 4
keys TRACE,WIDE,RELAY

</wide>

These definitions tell what “new-n-paradigm” word stems (up to 5 chars each) are treated
as “trace”, and what are treated as “wide”.

At first the system looks at “trace” entries, and if it finds that a word-stem there is used on
packet to be digipeated, trace happens. The “wide” is looked up after trace, otherwise
same function.

In all cases the 'maxreq' checks that in case of:

CALL>APRS,WIDE1-1,WIDE3-3,WIDE3-3

the total number of requested hops is 1+3+3 = 7, and that as it exceeds the “maxreq” val-
ue, the packet will not be digipeated!

The “maxdone” limits hopping like this:

CALL>APRS,WIDE1*,WIDE3-1,WIDE3-3

it sees that “WIDE1*” means “1 done, list exhausted”, “WIDE3-1” means “2 done”, and
“WIDE3-3” means “0 done”. Total is then: 1+2+0 = 3, which is not yet over “maxdone” de-
fault value.

49 / 57

4.4 Effect of “viscous-delay” on a Digipeater

Use of viscous-delay 5 parameter on a <digipeater>'s <source> sub-section has dramat-
ic effect on number of packets that it sends out, and could be useful feature for a low-prior -
ity digipeater. Normally the big digipeaters are able to pick up the traffic, but sometimes
they can miss it. Alternatively of course multiple digipeaters are repeating it simultaneous-
ly, and your little node can not hear those major digipeaters because your antenna re-
ceives at least two of them equally strong and your FM receiver can not separate them.

50 / 57

5 Compile Time Options

Small memory footprint configuration option: --with-embedded (now default!)

Prefer to use: --with-pthreads

Use of pthreads results in a few 100 kB smaller memory footprint, and suitability to be
used on system without UNIX fork(2) semantics.

5.1 Building Debian package

The package has built-in default Makefile with ability to execute following command:

$ make make-deb

which executes for a while, and finally:

....
dpkg-deb: building package `aprx' in `../aprx_2.01.422-1_i386.deb'.
make[1]: Leaving directory `/home/matti/aprx-2.01.svn422'
 dpkg-genchanges -b >../aprx_2.01.422-1_i386.changes
dpkg-genchanges: binary-only upload - not including any source code
dpkg-buildpackage: binary only upload (no source included)

and the binary package is ready for installation.

5.2 Building RPM package

The package has built-in default Makefile with ability to execute following command:

$ make make-rpm

51 / 57

This page is intentionally left blank

52 / 57

6 Debugging

6.1 Testing Configuration

Testing the Aprx configuration, and many other things, is accomplished with command line
parameters:

• -d
• -dd
• -ddd
• -dddd
• -ddv

Starting the program without these parameters will run it on background, and be silent
about all problems it may encounter, however these options are not to be used in normal
software start scripts!

These give increasing amount of debug printouts to interactive terminal session that
started the program.

The program parses its configuration, and reports what it got from there. Possible wrong
interpretations of parameters are observable here, as well as straight error indications.
Running it with these options for 10-20 seconds will show initial start phase, at about 30
seconds the first beacons and telemetry packets are sent out and normal processing loops
have begun.

To observe all beacon transmissions on a beacon cycle, you must monitor it for one whole
cycle-size interval (default: 20 minutes!)

Program being tested with these options is killable simply by pressing Ctrl-C on controlling
terminal.

53 / 57

6.2 Hunting bugs

Nothing beats experience and throughout knowledge of the code, however good hints are
available by using various debugging tools.

6.2.1 With gdb

The program is compiled by default with debug symbols, thus if it crashes and “drops a
core”, as it is known in UNIX systems, usual method to look for a clue within the core is:

gdb /usr/sbin/aprx core.123
 ...
 (gdb) where

You can also run the program under debugger so that it falls back to it in case of some er -
ror, or reaching some interesting point, or whatever:

gdb /usr/sbin/aprx
(gdb) run -i

 ...
 (gdb) where

54 / 57

6.2.2 With valgrind

The valgrind is UNIX environment tool chest that can find different kind of memory errors
in codes. Scribling over end of buffer, wrong allocation/free pointers, referring on freed
memory, not freeing memory properly, etc.

Use of it is a bit of an art-form, but you need to compile the Aprx with suitable preparatory
step for valgrinding:

[aprx] $ make clean
[aprx] $ make valgrind

Then using the valgrind and its many tools:

valgrind --tool=drd -v ./aprx -d
valgrind --tool=memcheck -v --leak-check=full ./aprx -d

Redirecting the tool outputs to a file can also be useful, as some pesky errors have been
found only after several days of hunting. See also a tool called “script”.

55 / 57

This page is intentionally left blank

56 / 57

7 Colophon

This document was written with OpenOffice 3.2.1 producing ODT file, and then exporting a
PDF file out of it. Unfortunately this system is unable to produce decent HTML for web-
pages out of same document source.

Alternate technologies, like editing DOCBOOK SGML were considered, but thought to be
a bit too cumbersome for initial writeup. The DOCBOOK would give excellent printed and
web format outputs.

57 / 57

	1 What is APRX?
	2 Configuration Examples
	2.1 Minimal Configuration of Rx-iGate
	2.2 Minimal Configuration APRS Digipeater
	2.3 Controlling New-n-paradigm
	2.4 Filtering APRS Digipeater
	2.5 Combined APRS Digipeater and Rx-iGate
	2.6 Doing Transmit-iGate
	2.7 Digipeater and Transmit-iGate
	2.8 A Fill-In Digipeater
	2.9 Using Multiple Radios
	2.10 A Tx-iGate with Multiple Radios on Each Frequency
	2.11 A Bi-Directional Cross-band Digipeater
	2.12 Limited Service Area Digipeater
	2.13 Limited Service Area Tx-iGate
	2.14 Sending telemetry to radio interface
	2.15 DPRS-to-APRS Gateway

	3 Configuration in details
	3.1 The “mycall” Parameter
	3.2 Aprx Configuration Parameter Types
	3.3 The “<aprsis>” section
	3.4 The “<logging>” section
	3.4.1 The rflog file

	3.5 The “<interface>” sections
	3.5.1 The KISS variations
	3.5.2 Linux AX25-DEVICE
	3.5.3 POSIX serial-port devices, KISS mode, sub-interface 0
	3.5.4 POSIX serial-port devices, KISS mode, multiple sub-interfaces
	3.5.5 POSIX serial-port devices, TNC2 mode
	3.5.6 POSIX serial-port devices, DPRS mode
	3.5.7 Networked tcp-stream connected terminal devices
	3.5.8 NULL-DEVICE

	3.6 The “<beacon>” sections
	3.7 The “<telemetry>” sections
	3.8 The <digipeater> sections
	3.8.1 The <trace> sub-section
	3.8.2 The <wide> sub-section
	3.8.3 The <source> sub-sections
	3.8.3.1 Filter entries
	3.8.3.2 Regex-filter entries

	3.8.4 Digipeating other than APRS packets

	4 Running the Aprx Program
	4.1 Normal Operational Running
	4.1.1 On RedHat/Fedora/SuSE/relatives
	4.1.2 On Debian/Ubuntu/derivatives
	4.1.3 Logrotate (Linux systems)

	4.2 The aprs.fi Services for Aprx
	4.3 Keywords on <trace> and <wide> sub-sections of <digipeater> sections.
	4.4 Effect of “viscous-delay” on a Digipeater

	5 Compile Time Options
	5.1 Building Debian package
	5.2 Building RPM package

	6 Debugging
	6.1 Testing Configuration
	6.2 Hunting bugs
	6.2.1 With gdb
	6.2.2 With valgrind

	7 Colophon

