
Aprx 1.97 Manual

Aprx 1.97 Manual

Table of Contents
1 What is APRX?.. 2
2 Configuration Examples:... 3

2 Minimal Configuration of Rx-iGate.. 3
3 Minimal Configuration APRS Digipeater... 4
4 Combined APRS Digipeater and Rx-iGate... 5
5 Doing Transmit-iGate.. 6
6 Digipeater and Transmit-iGate.. 7
7 A Fill-In Digipeater... 8
8 Using Multiple Radios... 9
9 A Digipeater with Multiple Radios... 10
10 A Bi-Directional Cross-band Digipeater.. 11
11 Limited Service Area Digipeater.. 12

3 Configuration in details.. 13
1 Aprx Configuration Parameter Types.. 13
2 The “mycall” Parameter.. 14
3 The “<aprsis>” section.. 15
4 The “<logging>” section.. 16
5 The “<interface>” sections.. 17
6 The “<beacon>” sections.. 23
7 The “<digipeater>” sections.. 26

4 Running the Aprx Program.. 30
1 Normal Operational Running.. 30
2 Testing Configuration.. 31
3 The aprs.fi Services for Aprx... 32

5 Compile Time Options... 33

By Matti Aarnio, OH2MQK, 2009
Version 0.12

1 / 33

Aprx 1.97 Manual

1 What is APRX?

The Aprx program is for amateur radio APRS™ networking.

The Aprx program can do job of at least two separate programs:
1. APRS iGate
2. APRS Digipeater

The program has ability to sit on a limited memory system, it is routinely run on OpenWRT
machines with 8 MB of RAM and Linux kernel. 128 MB RAM small PC is quite enough for
this program with 64 MB ram disk, a web-server, etc.
The program is happy to run on any POSIX compatible platform, a number of UNIXes have
been verified to work, Windows needs some support code to work.
On Linux platform the system supports also Linux kernel AX.25 devices.

This program will also report telemetry statistics on every interface it has. This can be used to
estimate radio channel loading, and in general to monitor system and network health.
The telemetry data is viewable via APRSIS based services, like http://aprs.fi

2 / 33

http://aprs.fi/

Aprx 1.97 Manual

2 Configuration Examples:

2 Minimal Configuration of Rx-iGate
To make a receive-only iGate, you need simply to configure:

1. mycall parameter
2. APRSIS network connection
3. Interface for the radio

mycall N0CALL-1

<aprsis>
server rotate.aprs2.net 14580

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS

</interface>

You need to fix the “N0CALL-1” callsign with whatever you want it to report receiving packets
with (it must be unique in global APRSIS network!)
You will also need to fix the interface device with your serial port, network TCP stream server,
or Linux AX.25 device. Details further below.
In usual case of single radio TNC interface, this is all that a receive-only APRS iGate will
need.

You might want to have a peek at http://www.aprs2.net/ for possible other suitable servers to
use. The “rotate.aprs2.net” uses global pool of servers, however some regional pool might be
better suited – for example: euro.aprs2.net

3 / 33

http://www.aprs2.net/

Aprx 1.97 Manual

3 Minimal Configuration APRS Digipeater
To make a single interface digipeater, you will need:

1. mycall parameter
2. <interface> definition
3. <digipeater> definition

Additional bits over the Rx-iGate are highlighted below:

mycall N0CALL-1

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmit $mycall
<source>

source $mycall
</source>

</digipeater>

The interface must be configured for transmit mode (default mode is receive-only)
Defining a digipeater is fairly simple as shown.

4 / 33

Aprx 1.97 Manual

4 Combined APRS Digipeater and Rx-iGate
Constructing a combined APRS Digipeater and Rx-iGate means combining previously shown
configurations:

mycall N0CALL-1

<aprsis>
server rotate.aprs.net 14580

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmit $mycall
<source>

source $mycall
</source>

</digipeater>

It really is as simple as that. When an <aprsis> section is defined, all declared <interface>s
are Rx-iGate:d to APRSIS in addition to what else the system is doing.

5 / 33

Aprx 1.97 Manual

5 Doing Transmit-iGate

At the time of the writing, doing Tx-iGate is still lacking some bits necessary for correct func -
tioning, and it is relaying too much traffic from APRSIS to RF.

mycall N0CALL-1

<aprsis>
server rotate.aprs.net 14580

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmit $mycall
<source>

source APRSIS
digi-mode 3rd-party
via-path WIDE1-1 # default: none
filter t/m

</source>
</digipeater>

This is Rx/Tx-iGate in a form that Aprx version 1.97 can do.
It does omit couple important bits on controlling transmission from APRSIS to radio, and thus
a kludge definition of filtering “pass only type M packets” (APRS Messages).

6 / 33

Aprx 1.97 Manual

6 Digipeater and Transmit-iGate

This is fairly simple extension, but shows important aspect of Aprx's <digipeater> definitions,
namely that there can be multiple sources!
At the time of the writing, doing Tx-iGate is still lacking some bits necessary for correct func -
tioning, and it is relaying too much traffic from APRSIS to RF.

mycall N0CALL-1

<aprsis>
server rotate.aprs.net 14580

</aprsis>

<interface>
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<digipeater>
transmit $mycall
<source>

source $mycall
</source>
<source>

source APRSIS
digi-mode 3rd-party
filter t/m

</source>
</digipeater>

Using both the radio port, and APRSIS as sources makes this combined Tx-iGate, and digi -
peater.

7 / 33

Aprx 1.97 Manual

7 A Fill-In Digipeater
Classically a fill-in digipeater means a system that digipeats heard packet only when it hears it
as from first transmission. Usually implemented as “consider WIDE1-1 as your alias”, but the
Aprx has more profound understanding of when it hears something as “directly from the
source”.

<digipeater>
transmit $mycall
<source>

source $mycall
relay-type directonly

</source>
</digipeater>

With Aprx you can add condition: and only if nobody else digipeats it within 5 seconds.

<digipeater>
transmit $mycall
<source>

source $mycall
relay-type directonly
viscous-delay 5

</source>
</digipeater>

8 / 33

Aprx 1.97 Manual

8 Using Multiple Radios
There is no fixed limit on number of radio interfaces that you can use, however of them only
one can use the default callsign from “$mycall” macro, all others must have explicite and
unique callsign:

mycall N0CALL-1

<interface>
callsign $mycall
serial-device /dev/ttyUSB0 19200 8n1 KISS
tx-ok true

</interface>

<interface>
callsign N0CALL-R2
serial-device /dev/ttyUSB1 19200 8n1 KISS

</interface>

Supported interface devices include:
1. On Linux: Any AX.25 network attached devices
2. On any POSIX system: any serial ports available through “tty” interfaces
3. Remote network terminal server serial ports over TCP/IP networking

On serial ports, following protocols can be used:
1. Plain basic KISS: Binary transparent, decently quick.
2. SMACK: A CRC16 two-byte CRC checksum on serial port KISS communication. Rec-

ommended mode for KISS operation.
3. XOR checksum on KISS: So called “BPQCRC” alias “XKISS”. Not recommended be-

cause it is unable to really detect data that has broken during serial port transmission.
Slightly better than plain basic KISS.

4. TNC2 monitoring format, receive only, often transmitted bytes outside printable ASCII
range of characters are replaced with space, or with a dot. Not recommended to be
used!

The KISS protocol variations support multiplexing radios on single serial port.

9 / 33

Aprx 1.97 Manual

9 A Digipeater with Multiple Radios

Extending on previous multiple interface example, here those multiple interfaces are used on
a digipeater. Transmitter interface is at “$mycall” label, others are receive only:

<digipeater>
transmit $mycall
<source>

source $mycall
</source>
<source>

source N0CALL-R2
</source>

</digipeater>

Adding there a source of APRSIS will merge in Tx-iGate function, as shown before. It is trivial
to make a multiple receiver, single transmitter APRS Digipeater with this.
The <digipeater> section transmitter has local APRS packet duplicate filter so that receiving
same packet from multiple diversity receiver sources sends out only first one of them.

10 / 33

Aprx 1.97 Manual

10 A Bi-Directional Cross-band Digipeater

Presuming having transmit capable radio <interface>s on two different bands, you can con-
struct a bi-directional digipeater by defining two <digipeater> sections.

<digipeater>
transmit N0CALL-1
<source>

source N0CALL-1
</source>
<source>

source N0CALL-2
</source>

</digipeater>

<digipeater>
transmit N0CALL-2
<source>

source N0CALL-1
</source>
<source>

source N0CALL-2
</source>

</digipeater>

Now both transmitters will digipeat messages heard from either radio.
You will probably want more control parameters to limit on how much traffic is relayed from
one source to other, more of that in the detail documentation.

11 / 33

Aprx 1.97 Manual

11 Limited Service Area Digipeater
A digipeater that will relay only packets from positions in a limited service area can be done
by using filtering rules:

<digipeater>
transmit N0CALL-1
<source>

source N0CALL-1
relay-type directonly
filter t/m # All messages (position-less)
filter a/60/23/59/25.20
filter a/60.25/25.19/59/27

</source>
</digipeater>

This example is taken from a limited service area digipeater on a very high tower in Helsinki,
Finland. The coordinates cover Gulf of Finland, and northern Estonia. Especially it was not
wanted to relay traffic from land-areas, but give excellent coverage to sail yachts.

12 / 33

Aprx 1.97 Manual

3 Configuration in details
The Aprx configuration file uses sectioning style familiar from Apache HTTPD.
These sections are:

1. mycall
2. <aprsis>
3. <logging>
4. <interface>
5. <beacon>
6. <digipeater>

Each section contains one or more of configuration entries with case depending type of pa-
rameters.

1 Aprx Configuration Parameter Types
The Aprx configuration has following types of parameters on configuration entries:

• Parameters can be without quotes, when such are not necessary to embed spaces, or
to have arbitrary binary content.

• Any parameter can be quoted by single or double quotes: “ .. “ ' .. '
• Any quoted parameter can contain \-escaped codes. Arbitrary binary bytes are encod-

able as “\xHH”, where “HH” present two hex-decimal characters from “\x00” to
“\xFF”. Also quotes and backslash can be backslash-escaped: “\”” “\\”

• Arbitrary binary parameter content is usable only where especially mentioned, other-
wise at least “\x00” is forbidden.

• UTF-8 characters are usable in parameters with and without quotes.
• Callsign definitions (see below)
• Interval definitions (see below)
• Very long parameter lines can be folded by placing a lone \-character at the end of

the configuration file text line to continue the input line with contents of following line,
for unlimited number of times.

13 / 33

Aprx 1.97 Manual

The interval-definition is convenience method to give amount of time in other units, than inte-
ger number of seconds. An interval-definition contains series of decimal numbers followed by
a multiplier character possibly followed by more of same. Examples:

2m2s
1h

The multiplier characters are:
1. s (S): Seconds, the default
2. m (M): Minutes
3. h (H): Hours
4. d (D): Days
5. w (W): Weeks

The callsign parameters are up to 6 alphanumeric characters followed by optional minus sign
(“-”, the “hyphen”) and optional one or two alphanumeric characters. Callsigns are internally
converted to all upper case form on devices. Depending on usage locations, the “SSID” suffix
may be up to two alphanumeric characters, or just plain integer from 0 to 15. That latter ap-
plies when a strict conformance to AX.25 callsigns is required. Callsign parameter with suffix
“-0” is canonicalized to a string without the “-0” suffix.

2 The “mycall” Parameter
The mycall entry is just one global definition to help default configuration to be minimalistic
by not needing copying your callsign all over the place in the usual case of single radio inter -
face setup.

14 / 33

Aprx 1.97 Manual

3 The “<aprsis>” section
The <aprsis> section defines communication parameters towards the APRSIS network.
When you define <aprsis> section, all configured <interface>s will be Rx-iGate:d to APRSIS!
Thus you can trivially add an Rx-iGate to a <digipeater> system, or to make a Rx-iGate with-
out defining any <digipeater>.
The only required parameter is the server definition:

server rotate.aprs.net 14580
where the port-number defaults to 14580, and can be omitted.

Additional optional parameters are:
• login callsign
• heartbeat-timeout interval-definition
• filter adjunct-filter-entry

The login defaults to global $mycall, thus it is not necessary to define.
Adding “heartbeat-timeout 2m” will detect failure to communicate with APRSIS a bit quicker
than without it. The current generation of APRSIS servers writes a heartbeat message every
20 seconds, and a two minute time-out on their waiting is more than enough.

The “filter ...” entries are concatenated, and given to APRSIS server as adjunct filter defini-
tions. For more information about their syntax, see:

http://www.aprs-is.net/javAPRSFilter.aspx

15 / 33

http://www.aprs-is.net/javAPRSFilter.aspx

Aprx 1.97 Manual

4 The “<logging>” section
The Aprx can log every kind of event happening, mainly you will be interested in rflog, and
aprxlog.
There is also a possibility to store statistics gathering memory segment on a filesystem back-
ing store, so that it can persist over restart of the Aprx process. This is possible even on a
small embedded machine (like OpenWRT), where statistics “file” resides on a ram-disk. This
way you can alter configurations and restart the process, while still continuing with previous
statistics dataset. Without the backing store this will cause at most 20 minute drop-off of sta-
tistics telemetry data.
Configuration options are:

• aprxlog filename
• rflog filename
• pidfile filename
• erlangfile filename
• erlang-loglevel loglevel
• erlanglog filename

Commonly you want setting aprxlog, and rflog entries. The erlangfile, and pidfile entries
have compile time defaults, and need not to be defined unless different locations are wanted.

16 / 33

Aprx 1.97 Manual

5 The “<interface>” sections
The <interface> sections define radio interfaces that the Aprx communicates with.
There are three basic interface device types:

1. Linux AX.25 devices (ax25-device)
2. Generic POSIX serial ports (serial-device)
3. Remote network serial ports (tcp-device)

The serial port devices can be reading TNC2 style monitoring messages (and be unable to
transmit anything), or communicate with a few variations of KISS protocol (and transmit). On
KISS protocols you can use device multiplexing, although cases needing polling for reception
are not supported. Variations of KISS protocol are described separately.
On Linux systems the kernel AX.25 network devices are also available, and Aprx integrates
fully with kernel AX.25 networking.
Each interface needs a unique callsign and to help the most common case of single radio in-
terface, it defaults to one defined with mycall entry. The interface callsigns need not to be
proper AX.25 callsigns on receive-only serial/tcp-device interfaces, meaning that a N0CALL-
R0 .. R9 .. RA .. RZ are fine examples of two character suffixes usable on such receivers.
As there are three different devices, there are three different way to make an <interface> sec-
tion.

17 / 33

Aprx 1.97 Manual

The KISS variations:
The Aprx knows three variations of basic Chepponis/Karn KISS protocol, listed below in pref-
erence order:

1. Stuttgart Modified Amateur-radio-CRC-KISS (SMACK)
2. BPQCRC alias XKISS
3. Plain basic KISS

The SMACK uses one bit of CMD byte to indicate that it is indeed SMACK format of KISS
frame. The bit in question is highest bit, which is highest sub-interface identity bit. Thus
SMACK is not able to refer to sub-interfaces 8 to 15 of original KISS protocol. On the other
hand, hardly anybody needs that many! It uses CCITT-CRC16 algorithm, and is capable to
detect loss or insert of single bytes in frame as well as single and sometimes also multiple bit
flips in correct number of bytes within the frame.
The BPQCRC alias XKISS uses single byte containing XOR of all bytes within the data frame
(before the KISS frame encoding is applied/after it is taken off.) This is very weak checksum,
as it does not detect addition/removal of 0x00 bytes at all, and is unable to detect flipping of
same bit twice within the frame.
The plain basic KISS is adaptation of internet SLIP protocol, and has no checksum of any
kind in the framing interface.
If at all possible, do choose to use SMACK!
It is available for TNC2 clones from:

http://www.symek.com/g/tnc2firmware.html

Another KISS variation that is not supported is FLEXCRC. It is a bit like SMACK, but with dif-
ferent CRC polynomial. Adding support for it is possible, if somebody really wants it. Some-
thing else entirely would be 6PACK – which has low latency timing data

18 / 33

http://www.symek.com/g/tnc2firmware.html

Aprx 1.97 Manual

Linux AX25-DEVICE:
<interface>

ax25-device callsign
tx-ok boolean
alias RELAY,TRACE,WIDE

</interface>

The callsign parameter must be valid AX.25 callsign as it refers to Linux kernel AX.25 device
callsigns. Such Linux kernel device does not need to be active at the time the Aprx program
is started, the Aprx attaches itself on it dynamically when it appears, and detaches when it
disappears.
The interface alias entry can be defined as comma-separated lists of AX.25 callsigns, or as
multiple alias entries. Default set is above shown RELAY,TRACE,WIDE. If you define any
alias entry, the default set is replaced with your definitions.

POSIX serial-port devices, KISS mode, sub-interface 0:
<interface>

serial-device devicepath speed KISS
tx-ok boolean
callsign callsign
initstring “init-string-content”
timeout interval-definition
alias RELAY,TRACE,WIDE

</interface>
You can use a binary-transparent AX.25 radio modem on a KISS type connection. The above
example shows case of KISS modem on sub-interface 0.
The tx-ok entry (default value: “false”) controls whether or not the interface is capable to
transmit something.
The callsign entry defines system wide unique identity for the radio port, and for transmit ca-
pable interfaces it must be valid AX.25 callsign form, for receive-only ports it can be anything
that APRSIS accepts.
The initstring is a byte-string to be sent to the kiss devices. You can use this to send initializa-
tion values to KISS modems. Difficulty is that you must manually encode here everything, in-
cluding KISS framing.
Interface alias entry can be issued as comma-separated lists of AX.25 callsigns, or as multiple
alias entries. Default set is above shown RELAY,TRACE,WIDE. If you define any alias entry,
the default set is replaced with your definitions.

19 / 33

Aprx 1.97 Manual

POSIX serial-port devices, KISS mode, multiple sub-interfaces:
<interface>

serial-device devicepath speed KISS
initstring “init-string-content”
timeout interval-definition
<kiss-subif 0>

tx-ok boolean
callsign callsign
alias RELAY,TRACE,WIDE

</kiss-subif>
<kiss-subif 1>

tx-ok boolean
callsign callsign
alias RELAY,TRACE,WIDE

</kiss-subif>
</interface>

You can use a binary-transparent AX.25 radio modem on a KISS type connection. The above
example shows case of KISS modem on sub-interface 0.
The initstring is a byte-string to be sent to the kiss devices. You can use this to send initializa-
tion values to KISS modems. Difficulty is that you must manually encode here everything, in-
cluding KISS framing.
You can set a timeout parameter to close and reopen the device with optional initstring send-
ing, which will happen if there is interval-definition amount of time from last received data on
the serial port. Suitable amount of time depends on your local network channel, somewhere
busy a 5 minutes is quite enough (“5m”), elsewhere one hour may not be enough (“60m”).
The <kiss-subif N> sectioning tags have N in range of 0 to 7 on SMACK mode, and 0 to 15 on
other KISS modes. On each <kiss-subif N> sub-sections you can use:

• The tx-ok entry (default value: “false”) to control whether or not the sub-interface is ca-
pable to transmit something.

• The callsign entry to give unique identity for the sub-interface. For transmit capable
sub-interfaces it must be of valid AX.25 callsign form, for receive-only ports it can be
anything that APRSIS accepts.

• The sub-interface alias entry can be issued as comma-separated lists of AX.25 call-
signs, or as multiple alias entries. Default set is above shown RELAY,TRACE,WIDE. If
you define any alias entry, the default set is replaced with your definitions.

20 / 33

Aprx 1.97 Manual

POSIX serial-port devices, TNC2 mode:
<interface>

serial-device devicepath speed TNC2
callsign callsign
timeout interval-definition
initstring “init-string-content”

</interface>
If you absolutely positively must have a TNC2 monitoring mode radio modem, then it can be
used for passive monitoring of heard APRS packets, but beware that such radio modems usu-
ally also corrupt some of heard APRS packets, and that this type of interface is not available
for transmit mode. Only mandatory entry is “serial-device”, others have usable defaults.
The callsign entry defines unique identity for the radio port, but it need not to be valid AX.25
callsign.
You can set a timeout parameter to close and reopen the device with optional initstring send-
ing, which will happen if there is interval-definition amount of time from last received data on
the serial port. Suitable amount of time depends on your local network channel, somewhere
busy a 5 minutes is quite enough (“5m”), elsewhere one hour may not be enough (“60m”).
You can use the initstring to issue a binary byte stream to the serial port to initialize the radio
modem, if necessary.

21 / 33

Aprx 1.97 Manual

Networked tcp-stream connected terminal devices:
<interface>

tcp-device hostname-or-ip-address portnumber KISS
....................
</interface>

<interface>
tcp-device hostname-or-ip-address portnumber TNC

....................via-
</interface>

These work identical to local physical serial ports described above.
The hostname-or-ip-address and portnumber point to remote terminal server, where remote
serial port is configured to attach on a radio modem. The connection must be such that no
extra bytes are added on the datastream, nor any byte codes are considered command es-
capes for the terminal server. That is, plain TCP, no TELNET service!

22 / 33

Aprx 1.97 Manual

6 The “<beacon>” sections
You can define multiple <beacon> sections each defining multiple beacon entries.
Beacons can be sent to radio only, to aprsis only, or to both. Default is to both.
You can configure beacons as literals, and also to load beacon content from a file at each
time it is to be transmitted. That latter allows external program, like weather probes, to feed in
an APRS weather data packet without it needing to communicate with Aprx via any special
protocols, nor make AX.25 frames itself.

The <beacon> section has following entries:
• cycle-size interval
• beaconmode { aprsis | both | radio }
• beacon ...

The cycle-size entry is global setter of beacon transmission cycle. Default value is 20 min-
utes, but if you want to beacon 3 different beacons on average 10 minutes in between each,
use interval value: 30m

The beaconmode setting defaults to both at the start of <beacon> section,, and affects
beacon entries following the setting, until a new setting. The aprsis setting will send follow-
ing beacons only to APRSIS, and the radio setting will send following beacons only to radio
interface(s).

The beacon entry parameters:
• to interface-callsign
• for callsign
• dest callsign
• via “viapath”
• timefix

... continued ...

23 / 33

Aprx 1.97 Manual

The to parameter sets explicit interface on which to send this beacon. If no to parameter
is given, then the beacon is sent on all interfaces.
The for parameter sets beacon packet source callsign, and it gets its default value from
transmit interface's callsign. In single tx case you do not need to set this. In multi-tx case you
may want to set this.
The dest parameter sets beacon packet destination callsign, default value is program re-
lease version dependent, but possible override could be like: “APRS”.
The via parameter adds fields on beacon AX.25 VIA path. Default is none, example value
would be like: via “WIDE1-1”
The timefix parameter sets a flag to modify transmitted APRS packets that have a time
stamp field (two kinds of basic position packets, and objects.) Set this only if your machine
runs with good quality NTP time reference.

Then either of following two:
• raw “APRS packet text”
• file filepath

or a combination of following:
• One of following three (default is type “!”)

◦ type “single-character-type”
◦ item “item-name”
◦ object “object-name”

• lat latitude
• lon longitude
• symbol “two-character-symbol”
• comment “text” (optional)

There are three different ways to define beacon data: file, raw, and third way is a combina-
tion of a number of data parameters. The third way has a benefit of being able to validate
packet structure at configuration time.
The file parameter is one alternate way to followed by a pathname to local file system at
which an other program can place APRS packet content to be sent out at next time it is en-
countered in the beacon cycle. The Aprx program reads it at beacon time for transmitting.
... continued ...

The raw parameter is followed by full raw APRS packet text. The packet data is not validat-
ed in any way!

The multi-component packet data content construction is done with following parameters:
The type parameter defaults to “!” and can be set to any of: "!", "=", "/", "@".
The item/object parameter sets name field for item and object type packets (“;” and “)”).
There is no default value.
The symbol parameter sets two character APRS symbol on the beaconed packet. It has no
default value.

24 / 33

Aprx 1.97 Manual

The lat parameter sets (and validates) APRS format latitude coordinate: ddmm.mmX where
X is 'S' or 'N' indicating latitude hemisphere. There is no default value.
The lon parameter sets (and validates) APRS format longitude coordinate: dddmm.mmX
where X is 'E' or 'W' indicating longitude hemisphere. There is no default value.
The comment parameter sets tail of the packet where an arbitrary text can appear, you can
use UTF-8 characters in there. There is no default value, use of this field is optional.
In order to construct a packet with these multi-component fields, you must use at least param-
eters: symbol, lat, lon.

Some examples:
<beacon>
 # Load beacon message content from a file:
 beacon file /tmp/wxbeacon.txt

 # Define fixed beacon from components:
 beacon via TRACE1-1 \

symbol "R&" lat "6016.35N" lon "02506.36E" \
comment "Aprx v1.97 - a Digi + Rx-iGate"

 # When all else fails, “raw” can be used:
 beacon raw "!6016.30NR02506.36E&Aprx v1.97 - a Digi + Rx-iGate"

 # Define an OBJECT for a local voice repeater:
 beacon object "OH2RAY" lat "6044.09N" lon "02612.79E" \
 symbol "/r" comment "434.775MHz TOFF -1600kHz R50k OH2RAY"
</beacon>

25 / 33

Aprx 1.97 Manual

7 The “<digipeater>” sections
With Aprx you can define multiple <digipeater> sections, each to their unique transmitter.
At each <digipeater> section you can define multiple <source> sub-sections so that traffic
from multiple sources are sent out with single transmitter.
The Aprx implements duplicate checking per each transmitter, and if same message is re-
ceived via multiple (diversity) receivers, only one copy will be transmitted.
The Aprx implements also basic AX.25 digipeater for non-APRS frames, where radio interface
callsign (and interface aliases) is matched against first AX.25 address header VIA field without
its H(as been digipeated)-bit set.
The structure of each <digipeater> section is as follows:

<digipeater>
transmitter callsign
ratelimit 120
<trace>

... (defaults are usually OK)
</trace>
<wide>

... (defaults are usually OK)
</wide>
<source>

source callsign
... (defaults are usually OK)

</source>
... (more sources can be defined)

</digipeater>

The transmitter entry defines callsign of transmitter radio port to be used for this section.
There is no default, but macro $mycall is available.
The ratelimit gives upper limit on number of packets to be relayed per minute. System
tracks number of packets sent per 3 second timeslots, and keeps total on 60 seconds under
the ratelimit value. Default value is 60. Maximum value is 300. (Default limit saturates 1200
bps AFSK channel, but 9600 bps channel has some slack.)
The <trace> sub-section is available both at <digipeater> and at <source> levels. Source
specific settings override digipeater-wide settings. More details below. The <trace> settings
are looked at before <wide> settings, thus same key value in both
The <wide> sub-section is alike <trace> sub-section, more details below.
The <source> sub-sections define sources that this digipeater instance receives its packets
from. Same source devices can feed packets to multiple digipeaters.

The <trace> sub-section:
<trace>

maxreq N # in range: 1 .. 7, default: 4
maxdone N # in range: 1 .. 7, default: 4

26 / 33

Aprx 1.97 Manual

keys TRACE,WIDE,RELAY
</trace>

The <trace> block settings can be at <digipeater> level, and at <source> sub-level. The
<digipeater> level has above listed default values.
The <source> sub-level <trace> instance is used at first to check what to do to packet. If
there is no match at <source> sub-level, the <digipeater> level <trace> entry is checked. If
neither matched, then <wide> entries (see below) are used in similar manner.
The maxreq and maxdone entries (both default to 4) limit the number of requested digipeat
hops to listed amount, and in case of some of those requests being done, also limit the num-
ber of executed hops.

FIXME: “heard direct” behaviour when maxreq is reached or exceeded is to mark all
VIA fields with H-bit, and then to transmit it. On other situation observed excess leads
to silent dropping of packet.

The keys entry defines multiple “new-n paradigm” style keyword stems that are matched for
the first VIA field without H-bit set.

FIXME: keywords to choose, source specific keywords, ...

The <wide> sub-section:
<wide>

maxreq N # in range: 1 .. 7, default: 4
maxdone N # in range: 1 .. 7, default: 4
keys TRACE,WIDE

</wide>

The <wide> sub-section keywords are matched only, if <trace> sub-section keywords have
bot matched. Match on the <wide> sub-section keywords means that no “trace” behaviour is
done on outgoing digipeated packet's AX.25 address fields, only decrementing the request
counts.
Otherwise same notes apply as on <trace> sub-section.

27 / 33

Aprx 1.97 Manual

The <source> sub-sections:
<source>

source callsign
#via-path foo # for “source APRSIS” only!
relay-type keyword
viscous-delay N # in range: 0..9, default: 0
regex-filter ...
filter ...
<trace>

...
</trace>
<wide>

...
</wide>

</source>

The source entry uses a callsign reference to <interface> sections. There is one special
built-in interface in addition to those that you define: “APRSIS”, which is basis of Tx-iGate im-
plementation.
The <trace> and <wide> sub-sub-sections define source specific instances of respective
processing rules. This way a source on 50 MHz band can have special treatment rules for
<trace>/<wide>, while <digipeater> wide rules are used for other sources. Presence of
<trace>/<wide> sub-sub-sections overrides respective <digipeater> section level versions of
themselves.
The via-path is used only on APRSIS case, where it defines the VIA-path for outgoing 3 rd-
party frame, and it defaults to empty VIA-path.
The relay-type defines how the digipeater modifies AX.25 address fields it passes through.
Available values are: 3rd-party (“third-party”) for APRSIS Tx-iGate use only, digipeated (de-
fault value,) and directonly for special fill-in digipeaters.
The viscous-delay is auxiliary parameter usable on relay-type directonly digipeaters. It de-
fines number of seconds that this digipeater will hold on the packet, and account any other
possible arrival of same packet by means of comparing early all packets on transmitter specif-
ic duplicate filter. If at the end of the delay this is still unique observation of the packet, then it
will be sent out.
The filter entries define javAPRSSrvr style adjunct filter entries that must pass through the
arriving packet. Not all adjunct filters make any sense on a digipeater...
The regex-filter supplies an ad-hoc mechanism to reject matching things from packets.

28 / 33

Aprx 1.97 Manual

Filter entries:
Only following of javAPRSSrvr adjunct filter entries are supported on <source> section:

• A/latN/lonW/latS/lonE
• B/call1/call2...
• F/call/dist_km
• O/object1/object2...
• P/aa/bb/cc...
• R/lat/lon/dist_km
• S/pri/alt/overlay
• T/.../call/km
• U/unproto1/unproto2...

For more information about their syntax, see:
http://www.aprs-is.net/javAPRSFilter.aspx

Regex-filter entries:

A set of regex-filter rules can be used to reject packets that are not of approved kind.
Available syntax is:

• regex-filter source RE
• regex-filter destination RE
• regex-filter via RE
• regex-filter data RE

The keywords “source”, “destination”, “via”, “data” tell which part of the AX.25 packet the
following regular expression is applied on. Defining multiple entries of same keyword will be
tested in sequence on that data field. First one matching will terminate the matcher and
cause the packet to be rejected.

The regex-filter exists as ad-hoc method when all else fails.

29 / 33

http://www.aprs-is.net/javAPRSFilter.aspx

Aprx 1.97 Manual

4 Running the Aprx Program

1 Normal Operational Running
The Aprx program is intended to be run without any command line parameters, but some are
available for normal operation:

• -f -- tell location of runtime aprx.conf file, if default is not suitable for some reason.
• -L -- log a bit more on aprx.log

Depending on your host system, you may need to setup init-script and its associated startup
parameter file.

On RedHat/Fedora/SuSE/relatives:
/etc/sysconfig/aprx
STARTAPRX="yes"
DAEMON_OPTS=""

after installation, you may need to execute following two commands as root:
chkconfig aprx on
service aprx start

On Debian/Ubuntu/derivatives:
/etc/default/aprx
STARTAPRX="yes"
DAEMON_OPTS=""

after installation, you may need to execute following two commands as root:
update-rc.d aprx defaults 84
/etc/init.d/aprx start

You will also need logrotate service file. This one is handy to rotate your possible logs so
that especially embedded installations should never overflow their RAM-disks with useless log
files. The file in question is something like this:
/var/log/aprx/aprx-rf.log /var/log/aprx/aprx.log /var/log/aprx/erlang.log {
 monthly
 rotate 24
compress
 missingok
 notifempty
 create 644 root adm
}

30 / 33

Aprx 1.97 Manual

2 Testing Configuration
Testing the Aprx configuration, and many other things, is accomplished with command line pa-
rameters:

• -d
• -dd
• -ddv

Starting the program without these parameters will run it on background, and be silent about
all problems it may encounter, however these options are not to be used in normal software
start scripts!

These give increasing amount of debug printouts to interactive terminal session that started
the program.

The program parses its configuration, and reports what it got from there. Possible wrong
interpretations of parameters are observable here, as well as straight error indications.
Running it with these options for 10-20 seconds will show initial start phase, at about 30
seconds the first beacons and telemetry packets are sent out and normal processing loops
have begun.

Program being tested with these options is killable simply by pressing Ctrl-C on controlling
terminal.

31 / 33

Aprx 1.97 Manual

3 The aprs.fi Services for Aprx
The Aprx sends telemetry packets for each active radio interface, and aprs.fi can plot them to
you in time-series graphs per APRS specification 1.0.1 Telemetry packet rules.
These graphs are:

1. Channel received Erlang estimate (based on received bytes, not actual detected
higher RSSI levels)

2. Channel transmitted Erlang estimate (based on number of transmitted bytes, not
actual PTT time)

3. Number of received packets on channel
4. Number of packets that receiving iGate function discarded for one reason or anoth-

er
5. Number of transmitted packets

All represent counts/averages scaled to be over 10 minute time period.

32 / 33

Aprx 1.97 Manual

5 Compile Time Options
TO BE WRITTEN

33 / 33

	1 What is APRX?
	2 Configuration Examples:
	2 Minimal Configuration of Rx-iGate
	3 Minimal Configuration APRS Digipeater
	4 Combined APRS Digipeater and Rx-iGate
	5 Doing Transmit-iGate
	6 Digipeater and Transmit-iGate
	7 A Fill-In Digipeater
	8 Using Multiple Radios
	9 A Digipeater with Multiple Radios
	10 A Bi-Directional Cross-band Digipeater
	11 Limited Service Area Digipeater

	3 Configuration in details
	1 Aprx Configuration Parameter Types
	2 The “mycall” Parameter
	3 The “<aprsis>” section
	4 The “<logging>” section
	5 The “<interface>” sections
	6 The “<beacon>” sections
	7 The “<digipeater>” sections

	4 Running the Aprx Program
	1 Normal Operational Running
	2 Testing Configuration
	3 The aprs.fi Services for Aprx

	5 Compile Time Options

