
APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

APRX Software Requirement Specification

Table of Contents
1 APRX Software Requirement Specification... 2

1.1 Purpose:.. 2
1.2 Usage Environments:... 3

2 Treatment rules:... 4
2.1 Basic IGate rules:... 4
2.2 Low-Level Transmission Rules:.. 5
2.3 Low-Level Receiving Rules:... 6
2.4 Additional Tx-IGate rules:... 6
2.5 Digipeater Rules:.. 7
2.6 Duplicate Detector.. 8
2.7 Radio Interface Statistics Telemetry... 8
2.8 Individual Call-Signs for Each Receiver, or Not?.. 9
2.9 Beaconing... 10

2.9.1 Radio Beaconing... 10
2.9.2 Network beaconing.. 10

3 Configuration Language... 11
3.1 APRSIS Interface Definition.. 12
3.2 Radio Interface Definitions... 12
3.3 Digipeating Definitions.. 13

3.3.1 <trace>.. 15
3.3.2 <wide>... 15
3.3.3 <trace>/<wide> Default Rules... 16

3.4 Beacon definitions.. 17

1 / 20

1

2

3

4

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

1 APRX Software Requirement Specification
This is Requirement Specification for a software serving in Amateur Radio APRS service.

Reader is assumed to be proficient with used terminology, and they are not usually
explained here.

1.1 Purpose:

This describes algorithmic, IO-, and environmental requirements for a software doing any
combination of following four tasks related to APRS service:

1. Listen on messages with a radio, and pass them to APRSIS network service

2. Listen on messages with a radio, and selectively re-send them on radio

3. Listen on messages with a radio, and selectively re-send them on radios on other
frequencies

4. Receive messages from APRSIS network, and after selective filtering, send some of
them on radio

Existing aprx software implements Receive-Only (Rx) IGate functionality, and the purpose
of this paper is to map new things that it will need for extending functionality further.

2 / 20

5

6

7
8

9

10
11

12

13

14
15

16
17

18

19
20

21

22

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

1.2 Usage Environments:

The aprx software can be used in several kinds of environments to handle multiple tasks
associated with local APRS network infrastructure tasks.

On following one should remember that amateur radio transmitters need a specially
licensed owner/operator or a license themselves, but receivers do not need such:

1. License-free Receive-Only (RX) IGate, to add more “ears” to hear packets, and to
pipe them to APRSIS. (Owner/operator has a license, but a receiver does not need
special transmitter license.)

2. Licensed bidirectional IGate, selectively passing messages from radio channels to
APRSIS, and from APRSIS to radio channels, but not repeating packets heard on a
radio channel back to a radio channel.

3. Licensed bidirectional IGate plus selectively re-sending of packets heard on radio
channels back to radio channels

4. Licensed system for selectively re-sending of packets heard on radio channels back
to other radio channels, and this without bidirectional IGate service.

5. Licensed system for selectively re-sending of packets heard on radio channels back
to radio channels, and doing with with “receive only” IGate, so passing information
heard on radio channel to APRSIS, and not the other way at all.

In more common case, there is single radio and single TNC attached to digipeating (re-
sending), in more challenging cases there are multiple receivers all around, and very few
transmitters. Truly challenging systems operate on multiple radio channels. As single-
TNC and single-radio systems are just simple special cases of these complex systems,
and for the purpose of this software requirements we consider the complex ones:

1. 3 different frequencies in use, traffic is being relayed in between them, and the
APRSIS network.

2. On each frequency there are multiple receivers, and one well placed transmitter.

3. Relaying from one frequency to other frequency may end up having different rules,
than when re-sending on same frequency: Incoming packet retains traced paths,
and gets WIDEn-N/TRACEn-N requests replaced with whatever sysop wants.

3 / 20

23

24
25

26
27

28
29
30

31
32
33

34
35

36
37

38
39
40

41

42
43
44
45
46

47
48

49

50
51
52

53

54

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

2 Treatment rules:
Generally: All receivers report what they hear straight to APRSIS, after small amount of
filtering of junk messages, and things which explicitly state that they should not be sent to
APRSIS.

2.1 Basic IGate rules:

General rules for these receiving filters are described here:

http://www.aprs-is.net/IGateDetails.aspx

Gate all packets heard on RF to the Internet (Rx-IGate) EXCEPT

1. 3rd party packets (data type '}') should have all before and including the data
type stripped and then the packet should be processed again starting with
step 1 again. There are cases like D-STAR gateway to APRS of D-STAR
associated operator (radio) positions.

2. generic queries (data type '?').
3. packets with TCPIP, TCPXX, NOGATE, or RFONLY in the header, especially

in those opened up from a 3rd party packets.

Gate message packets and associated posits to RF (Tx-IGate) if

1. the receiving station has been heard within range within a predefined time
period (range defined as digi hops, distance, or both).

2. the sending station has not been heard via RF within a predefined time
period (packets gated from the Internet by other stations are excluded from
this test).

3. the sending station does not have TCPXX, NOGATE, or RFONLY in the
header.

4. the receiving station has not been heard via the Internet within a predefined
time period.

A station is said to be heard via the Internet if packets from the station contain
TCPIP* or TCPXX* in the header or if gated (3rd party) packets are seen on RF
gated by the station and containing TCPIP or TCPXX in the 3rd party header (in
other words, the station is seen on RF as being an IGate).

Gate all packets to RF based on criteria set by the sysop (such as call-sign, object
name, etc.).

Rx-IGate to APRSIS can use duplicate detection, and refuse to repeat same packet over
and over again to APRSIS network.

With more advanced looking inside frames to be relayed, both the digipeater and Tx-IGate
can use filtering rules, like “packet reports a position that is within my service area.”

4 / 20

55

56
57
58

59

60

61

62

63

64
65
66
67
68
69
70

71

72

73
74
75
76
77
78
79
80
81

82
83
84
85

86
87

88

89
90

91
92

93

http://www.aprs-is.net/IGateDetails.aspx

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

From multiple receivers + single (or fewer) transmitter(s) follows, than when a more usual
system does not hear what it sent out itself, this one will hear, and its receivers must have
a way to ignore a frame it sent out itself a moment ago.

Without explicit “ignore what I just sent” filtering, an APRS packet will get reported twice to
APRSIS:

 rx ⇒ igate-to-aprsis + digi ⇒ tx ⇒ rx ⇒ igate-to-aprsis + digi (dupe filter stops)

Digipeating will use common packet duplication testing to sent similar frame out only once
per given time interval (normally 30 seconds.)

An RF/Analog way to handle the “master-TX spoke this one, I will ignore it” could be use of
audio subtones (American Motorola lingo: PL tone, otherwise known as CTCSS.)
Digipeater transmitters have unique CTCSS subtone at each, and all receivers have
subtone decoders. When they detect same subtone as their master has, they mute the
receiver to data demodulator audio signal.

A third way would be to recognize their master transmitter callsign in AX.25 VIA path, or at
FROM field, which presumes that the master transmitters will do TRACE mode adding of
themselves on digipeated paths.

5 / 20

94

95
96
97

98
99

100

101
102

103

104
105
106
107
108

109

110
111
112

113

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

2.2 Low-Level Transmission Rules:

These rules control repeated transmissions of data that was sent a moment ago, and other
basic transmitter control issues, like persistence. In particular the persistence is fine
example of how to efficiently use radio channel, by sending multiple small frames in quick
succession with same preamble and then be silent for longer time.

1. Duplication detector per transmitter: Digipeater and Tx-IGate will ignore packets
finding a hit in this subsystem.

2. A candidate packet is then subjected to a number of filters, and if approved for it,
the packet will be put on duplicate packet detection database (one for each
transmitter.) See Digipeater Rules, below.

3. Because the system will hear the packets it sends out itself, there must be a global
expiring storage for recently sent packets, which the receivers can then compare
against. (Around 100 packets of 80-120 bytes each.) This storage gets a full copy
of packet being sent out – a full AX.25 frame.

Also, transmitters should be kept in limited leash: Transmission queue is less than T
seconds (< 5 ?), which needs some smart scheduling coding, when link from computer to
TNC is considerably faster.

Original KISS interface is defined as “best effort”: if TNC is busy while host sends a frame,
the frame may be discarded, and “upper layers” will resend. In APRS Digipeating, the
upper layer sends the packet once, and then declares circa 30 second moratorium on
packets with same payload.

2.3 Low-Level Receiving Rules:

1. Received AX.25 packet is compared against “my freshly sent packets” storage, and
matched ones are dropped. (Case of one/few transmitters, and multiple receivers
hearing them.)

2. Received packet is validated against AX.25 basic structure, invalid ones are
dropped.

3. Received packet is validated against Rx-IGate rules, forbidden ones are dropped
(like when a VIA-field contains invalid data.)

4. Packet may be rejected for Rx-IGate, but it may still be valid for digipeating!
For example a 3rd party frame is OK to digipeat, but not to Rx-IGate to APRSIS!
Also some D-STAR to APRS gateways output 3rd party frames, while the original
frame is quite close to an APRS frame.

Divide packet rejection filters to common, and destination specific ones.

6 / 20

114

115
116
117
118

119
120

121
122
123

124
125
126
127

128
129
130

131
132
133
134

135

136
137
138

139
140

141
142

143
144
145
146

147

148

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

2.4 Additional Tx-IGate rules:

The Tx-IGate can have additional rules for control:

1. Multiple filters look inside the message, and can enforce a rule of “repeat only
packets within my service area,” or to “limit passing message responses only to
destinations within my service area”. Filter input syntax per javAPRSSrvr's adjunct
filters with negation extension.

2. Basic gate filtering rules:

1. the receiving station has been heard within range within a predefined time
period (range defined as digi hops, distance, or both).

2. the sending station has not been heard via RF within a predefined time period
(packets gated from the Internet by other stations are excluded from this test).

3. the sending station does not have TCPXX, NOGATE, or RFONLY in the header.
4. the receiving station has not been heard via the Internet within a predefined time

period.

A station is said to be heard via the Internet if packets from the station contain
TCPIP* or TCPXX* in the header or if gated (3rd-party) packets are seen on RF
gated by the station and containing TCPIP or TCPXX in the 3rd-party header (in
other words, the station is seen on RF as being an IGate).

3. Optionally wait a few seconds (like a random number of seconds in range of 1 to 5
seconds) before letting received packet out. This permits other systems to be faster
than the Tx-IGate system, and thus to get their voice.

7 / 20

149

150

151
152
153
154

155

156
157
158
159
160
161
162

163
164
165
166

167
168
169

170

171

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

2.5 Digipeater Rules:

Digipeater will do following for each transmitter:

1. Compare candidate packet against duplicate filter, if found, then drop it. (Low-level
transmission rules, number 1)

2. Count number of hops the message has so far done, and...

3. Figure out the number of hops the message has been requested to do
(e.g. “OH2XYZ-1>APRS,OH2RDU*,WIDE7-5: ...” will report that there was request
of 7 hops, so far 2 have been executed – one is shown on trace path.)

4. If either of previous ones are over any of configured limits, the packet is dropped.

5. FIXME: WIDEn-N/TRACEn-N treatment rules: By default treat both as TRACE,
have an option to disable “WIDE-is-TRACE” mode. Possibly additional keywords
for cross-band digipeating? (E.g. Bruninga said '6MTRSn-N' would be 'WIDEn-N'
on 50 MHz APRS, and only there.)

6. Multiple filters look inside the message, and can enforce a rule of “repeat only
packets within my service area.”

7. FIXME: Cross frequency digipeating? Treat much like Tx-IGate?
Relaying from one frequency to other frequency may end up having different rules,
than when re-sending on same frequency: Incoming packet retains traced paths,
and gets WIDEn-N/TRACEn-N requests replaced with whatever sysop wants.

8. Cross band relaying may need to add both an indication of “received on 2m”, and
transmitter identifier: “sent on 6m”:
“OH2XYZ-1>APRS,RX2M*,OH2RDK-6*,WIDE3-2: ...”

This “source indication token” may not have anything to do with real receiver
identifier, which is always shown on packets passed to APRSIS.

The MIC-e has a weird way to define same thing as normal packets do with
SRCCALL-n>DEST,WIDE2-2: ...

The MIC-e way (on specification, practically nobody implements it) is:
SRCCALL-n>DEST-2: ...

8 / 20

172

173

174
175

176

177
178
179

180

181
182
183
184

185
186

187
188
189
190

191
192
193

194
195
196

197
198
199
200

201

202

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

2.6 Duplicate Detector

Normal digipeater duplicate packet detection compares message source (with SSID),
destination (without SSID!), and payload data against other packets in self-expiring
storage called “duplicate detector”. Lifetime of this storage is commonly considered to be
30 seconds.

Practically the packet being compared at Duplicate Detector will be terminated at first CR
or LF in the packet, and if there is a space character preceding the line end, also that is
ignored when calculating duplication match. However: The Space Characters are sent,
if any are received, also when at the end of the packet! (Some TNC:s have added one
or two extra space characters on packets they digipeat...)

The “destination without SSID” rule comes from MIC-e specification, where a destination
WIDE uses SSID to denote number of distribution hops. Hardly anybody implements it.

2.7 Radio Interface Statistics Telemetry

Current aprx software offers telemetry data on radio interfaces. It consists of following four
things. Telemetry is reported to APRS-IS every 10 minutes:

1. Channel occupancy average in Erlangs over 1 minute interval, and presented as
busiest 1 minute within the report interval. Where real measure of carrier presence
on radio channel is not available, the value is derived from number of received
AX.25 frame bytes plus a fixed Stetson-Harrison constant added per each packet
for overheads. That is then divided by presumed channel modulation speed, and
thus derived a figure somewhere in between 0.0 and 1.0.

2. Channel occupancy average in Erlangs over 10 minute interval. Same data source
as above.

3. Count of received packets over 10 minutes.

4. Count of packets dropped for some reason during that 10 minute period.

Additional telemetry data points could be:

1. Number of transmitted packets over 10 minute interval

2. Number of packets IGate:d from APRSIS over 10 minute interval

3. Number of packets digipeated for this radio interface over 10 minute interval

4. Erlang calculations could include both Rx and Tx, but could also be separate.

9 / 20

203

204
205
206
207

208
209
210
211
212

213
214

215

216

217
218

219
220
221
222
223
224

225
226

227

228

229

230

231

232

233

234

235

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

2.8 Individual Call-Signs for Each Receiver, or Not?

Opinions are mixed on the question of having separate call-signs for each receiver (and
transmitter), or not. Even the idea to use all 16 available SSIDs for a call-sign for
something does get some opposition.

• There is no license fee in most countries for receivers, and there is no need to limit
used call-signs only on those used for the site transmitters.

• There is apparently some format rule on APRSIS about what a “call-sign” can be,
but it is rather lax: 6 alphanumerics + optional tail of: “-” (minus sign) and one or two
alphanumerics. For example OH2XYZ-R1 style call-sign can have 36 different
values before running out of variations on last character alone (A to Z, 0 to 9.)

• Transmitter call-signs are important, and there valid AX.25 format call-signs are
mandatory.

On digipeater setup the receiver call-signs are invisible on RF. There only transmitter call-
signs must be valid AX.25 addresses.

Transmitters should have positional beacons for them sent on correct position, and
auxiliary elements like receivers could have their positions either real (when elsewhere), or
actually placed near the primary Tx location so that they are separate on close enough
zoomed map plot.

Using individual receiver identities (and associated net-beaconed positions near the real
location) can give an idea of where the packet was heard, and possibly on which band. At
least the aprs.fi is able to show the path along which the position was heard.

10 / 20

236

237
238
239

240
241

242
243
244
245

246
247

248
249

250

251
252
253
254

255
256
257

258

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

2.9 Beaconing

Smallest time interval available to position viewing at aprs.fi site is 15 minutes. A beacon
interval longer than that will at times disappear from that view. Default view interval is 60
minutes.

Beacon transmission time must not be manually configured to fixed exact minute. There
are large peaks in APRSIS traffic because of people are beaconing out every 5 minutes,
and every 10 minutes, at exact 5/10 minutes. (Common happening with e.g. digi_ned.)

Beaconing system must be able to spread the requests over the entire cycle time (10 to 30
minutes) evenly. Even altering the total cycle time by up to 10% at random at the start of
each cycle should be considered (and associated re-scheduling of all beacon events at
every cycle start). All this to avoid multiple non-coordinated systems running at same
rhythm. System that uses floating point mathematics to determine spherical distance in
between two positions can simplify the distribution process by using float mathematics.
Also all-integer algorithms exist (e.g. Bresenham's line plotting algorithm.)

float dt = (float)cycle_in_seconds;
for (int i = 0; i < number_of_beacons;++i) {

beacon[i].tx_time = now + (i+1) * dt;
}

With only one beacon, it will go out at the end of the beacon cycle.

Receiver location beacons need only to be on APRSIS with additional TCPXX token,
transmitter locations could be also on radio.

2.9.1 Radio Beaconing

“Tactical situation awareness” beaconing frequency could be 5-10 minutes, WB4APR does
suggest at most 10 minutes interval. Actively moving systems will send positions more
often. Transmit time spread algorithm must be used.

Minimum interval of beacon transmissions to radio should be 60 seconds. If more
beacons need to be sent in this time period, use of Persistence parameter on TNCs (and
KISS) should help: Send the beacons one after the other (up to 3?) during same
transmitter activation, and without prolonged buffer times in between them. That is
especially suitable for beacons without any sort of distribution lists.

Minimize the number of radio beacons!

2.9.2 Network beaconing

Network beaconing cycle time can be up to 30 minutes.

Network beaconing can also transmit positions and objects at much higher rate, than radio
beaconing. Transmit time spread algorithm must be used.

Net-beacons could also be bursting similar to radio beacon Persistence – within a reason.

11 / 20

259

260
261
262

263
264
265

266
267
268
269
270
271
272

273
274
275
276

277

278
279

280

281
282
283

284
285
286
287
288

289

290

291

292
293

294

295

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

3 Configuration Language
System configuration language has several semi-conflicting requirements:

1. Easy to use

2. Minimal setup necessary for start

3. Sensible defaults

4. Self-documenting

5. Efficient self-diagnostics

6. Powerful – as ability to define complicated things

Examples of powerful, yet miserably complicated rule writing can be seen on digi_ned, and
aprsd. Both have proven over and over again that a correct configuration is hard to make.

On Embedded front, things like UIDIGI have tens of parameters to set, many of which can
be configured so that the network behaviour is degraded, if not downright broken.

UIView32 has poor documentation on what to put on destination address, and therefore
many users put there “WIDE” instead of “APRS,WIDE”, and thus create broken beacons.

Current aprx configuration follows “minimal setup” and “easy to use” rules, it is even “self-
documenting” and “self-diagnosing”, but its lack of power becomes apparent.

Some examples:

1. radio serial /dev/ttyUSB0 19200 8n1 KISS callsign N0CALL-14

2. netbeacon for N0CALL-13 dest "APRS" via “NOGATE” symbol "R&"
 lat "6016.30N" lon "02506.36E" comment "aprx - an Rx-only iGate"

The “radio serial” definition lacks handling of multiple TNCs using KISS device IDs, and
there is no easy way to define subid/callsign pairs.

The “netbeacon” format can do only basic “!”-type location fix packets. Extending it to
objects would probably cover 99% of wanted use cases.

Both have extremely long input lines, no input line folding is supported!

12 / 20

296

297

298

299

300

301

302

303

304

305
306

307
308

309
310

311

312
313

314

315

316
317

318
319

320
321

322

323

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

3.1 APRSIS Interface Definition

There can be multiple APRSIS connections defined, although only one is used at any time.

Parameter sets controlling this functionality is non-trivial.

<aprsis> # Alternate A, single server, defaults
 login OH2XYZ-R1
 server finland.aprs2.net:14580
 filter
 heartbeat-timeout 2 minutes
</aprsis>
<aprsis> # Alternate B, multiple alternate servers
 login OH2XYZ-R1
 <server finland.aprs2.net:14580>
 heartbeat-timeout 2 minutes
 filter
 </server>
 <server rotate.aprs.net:14580>
 heartbeat-timeout 120 seconds
 filter
 # Alt Login ?
 </server>
</aprsis>

3.2 Radio Interface Definitions

Interfaces are of multitude, some are just plain serial ports, some can be accessed via
Linux internal AX.25 network, or by some other means, platform depending.

<interface>
 serial-device /dev/ttyUSB1 19200 8n1 KISS
 tx-ok false # receive only (default)
 callsign OH2XYZ-R2 # KISS subif 0
</interface>
<interface>
 serial-device /dev/ttyUSB2 19200 8n1 KISS
 <kiss-subif 0>
 callsign OH2XYZ-2
 tx-ok true # This is our transmitter
 </kiss-subif>
 <kiss-subif 1>
 callsign OH2XYZ-R3 # This is receiver
 tx-ok false # receive only (default)
 </kiss-subif>
</interface>
<interface>
 ax25-device OH2XYZ-6
 tx-ok true # This is also transmitter
</interface>

13 / 20

324

325

326

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345

346
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

3.3 Digipeating Definitions

The powerfulness is necessary for controlled digipeating, where traffic from multiple
sources gets transmutated to multiple destinations, with different rules for each of them.

1. Destination device definition (refer to “serial radio” entry, or AX.25 network
interface), must find a “tx-ok” feature flag on the interface definition.

2. Possible Tx-rate-limit parameters

3. Groups of:

1. Source device references (of “serial radio” or ax25-rxport call-signs, or “APRSIS”
keyword)

2. Filter rules, if none are defined, source will not pass anything in. Can have also
subtractive filters – “everything but not that”. Multiple filter entries are processed
in sequence.

3. Digipeat limits – max requests, max executed hops.

4. Control of treat WIDEn-N as TRACEn-N or not. (Default: treat as TRACE, know
WIDEn-N, TRACEn-N, WIDE, TRACE, RELAY and thread them as aliases.)

5. Alternate keywords that are controlled as alias of “WIDEn-N”

6. Alternate keywords that are controlled as alias of “TRACEn-N”

7. Additional rate-limit parameters

14 / 20

368

369
370

371
372

373

374

375
376

377
378
379

380

381
382

383

384

385

386

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

Possible way to construct these groups is to have similar style of tag structure as Apache
HTTPD does:

<digipeater>
 transmit OH2XYZ-2 # to interface with callsign OH2XYZ-2
 ratelimit 20 # 20 posts per minute
 <trace>
 keys RELAY,TRACE,WIDE,HEL
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </trace>
<wide> # Use internal default
</wide>
 <source>
 source OH2XYZ-2 # Repeat what we hear on TX TNC
 filters
 relay-format digipeated # default
 </source>
 <source>
 source OH2XYZ-R2 # include auxiliary RX TNC data
 filters
 relay-format digipeated # default
 </source>
 <source>
 source OH2XYZ-7 # Repeat what we hear on 70cm
 filters
 relay-format digipeated # default
 relay-addlabel 70CM # Cross-band digi, mark source
 </source>
 <source>
 source DSTAR # Cross-mode digipeat..
 filters
 relay-format digipeated # FIXME: or something else?
 relay-addlabel DSTAR # Cross-band digi, mark source
 out-path WIDE2-2
 </source>
 <source>
 source APRSIS # Tx-IGate some data too!
 filters
 ratelimit 10 # only 10 IGated msgs per minute
 relay-format third-party # for Tx-IGated
 out-path WIDE2-2
 </source>
</digipeater>

15 / 20

387

388
389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

431

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

3.3.1 <trace>

Defines a list of keyword prefixes known as “TRACE” keys.

When system has keys to lookup for digipeat processing, it looks first the trace keys, then
wide keys. First match is done.

If a per-source trace/wide data is given, they are looked up at first, and only then the global
one. Thus per source can override as well as add on global sets.

 <trace>
 keys RELAY,TRACE,WIDE,HEL1

 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </trace>

3.3.2 <wide>

Defines a list of keyword prefixes known as “WIDE” keys.

When system has keys to lookup for digipeat processing, it looks first the trace keys, then
wide keys. First match is done.

If a per-source trace/wide data is given, they are looked up at first, and only then the global
one. Thus per source can override as well as add on global sets.

 <wide>
 keys WIDE,HEL
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </wide>

1 “HEL” is airport code for Helsinki Airport, so it is quite OK for local area distribution code as well.

16 / 20

432

433

434
435

436
437

438
439
440
441
442

443

444

445

446
447

448
449

450
451
452
453
454

455

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

3.3.3 <trace>/<wide> Default Rules

The <digipeater> level defaults are:

 <trace>
 keys RELAY,TRACE,WIDE
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </trace>
 <wide>
 keys WIDE # overridden by <trace>
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </wide>

The <source> level defaults are:

 <trace>
 keys # Empty set
 maxreq 0 # Max of requested, undefined
 maxdone 0 # Max of executed, undefined
 </trace>
 <wide>
 keys # Empty set
 maxreq 0 # Max of requested, undefined
 maxdone 0 # Max of executed, undefined
 </wide>

17 / 20

456

457

458
459
460
461
462
463
464
465
466
467

468

469

470
471
472
473
474
475
476
477
478
479

480

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

3.4 NetBeacon definitions

Netbeacons are sent only to APRSIS, and Rfbeacons to radio transmitters.

<netbeacon>
to APRSIS # default for netbeacons
 for N0CALL-13 # must define
 dest "APRS" # must define
 via "TCPIP,NOGATE" # optional
 type "!" # optional, default "!"
 symbol "R&" # must define
 lat "6016.30N" # must define
 lon "02506.36E" # must define
 comment "aprx - an Rx-only iGate" # optional
</netbeacon>

<netbeacon>
to APRSIS # default for netbeacons
 for N0CALL-13 # must define
 dest "APRS" # must define
 via "TCPIP,NOGATE" # optional
Define any APRS message payload in raw format, multiple OK!
 raw "!6016.35NR02506.36E&aprx - an Rx-only iGate"
 raw "!6016.35NR02506.36E&aprx - an Rx-only iGate"
</netbeacon>

18 / 20

481

482

483
484
485
486
487
488
489
490
491
492
493

494
495
496
497
498
499
500
501
502

503

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

3.5 RfBeacon definitions
Netbeacons are sent only to APRSIS, and Rfbeacons to radio
transmitters.

<rfbeacon>
to OH2XYZ-2 # defaults to first transmitter
 for N0CALL-13 # must define
 dest "APRS" # must define
 via "NOGATE" # optional
 type "!" # optional, default "!"
 symbol "R&" # must define
 lat "6016.30N" # must define
 lon "02506.36E" # must define
 comment "aprx - an Rx-only iGate" # optional
</rfbeacon>

<rfbeacon>
to OH2XYZ-2 # defaults to first transmitter
 for OH2XYZ-2 # must define
 dest "APRS" # must define
 via "NOGATE" # optional
 type ";" # ";" = Object
 name "OH2XYZ-6" # object name
 symbol "R&" # must define
 lat "6016.30N" # must define
 lon "02506.36E" # must define
 comment "aprx - an Rx-only iGate" # optional
</rfbeacon>

19 / 20

504

505
506

507
508
509
510
511
512
513
514
515
516
517

518
519
520
521
522
523
524
525
526
527
528
529

APRX Software Requirement Specification – version 0.23 – Matti Aarnio, OH2MQK

Configuration entry keys are:

name Optionality by type

! / ;)

to x(1) x(1) x(1)

for -- -- --

dest -- -- --

via x x x

raw X(2,5) X(2,5) X(2,5)

type x(2) x(2) x(2)

name invalid x(4) x(4)

symbol X(3,4) X(3,4) X(3,4)

lat X(3,4) X(3,4) X(3,4)

lon X(3,4) X(3,4) X(3,4)

comment X(3,4) X(3,4) X(3,4)

Optionality notes:

1. Netbeacons default is APRSIS system, and no transmitter is definable. Rfbeacons
default to first transmitter call-sign defined in <interface> sections, any valid
transmitter call-sign is OK for “to” keyword.

2. When a “raw” is defined, no “type” must be defined, nor any other piecewise parts
of symbol/item/object definitions.

3. Piecewise definitions of basic positional packets must define at least type + symbol
+ lat + lon. The comment is optional, and name is rejected if defined.

4. Piecewise definitions of item and object packets must define at least type + name
+ symbol + lat + lon. The comment is optional.

5. Multiple “raw” entries are permitted, they share to + for + dest + via -field data, and
each generates a beacon entry of its own.

6. Defining timestamped position/object/item packet will get a time-stamp of “h” format
(hours, minutes, seconds) generated when beacon is sent. This applies also to raw
packets! Computer must then have some reliable time source, NTP or GPS.

20 / 20

530

531

532

533

534
535
536

537
538

539
540

541
542

543
544

545
546
547

548

	1 APRX Software Requirement Specification
	1.1 Purpose:
	1.2 Usage Environments:

	2 Treatment rules:
	2.1 Basic IGate rules:
	2.2 Low-Level Transmission Rules:
	2.3 Low-Level Receiving Rules:
	2.4 Additional Tx-IGate rules:
	2.5 Digipeater Rules:
	2.6 Duplicate Detector
	2.7 Radio Interface Statistics Telemetry
	2.8 Individual Call-Signs for Each Receiver, or Not?
	2.9 Beaconing
	2.9.1 Radio Beaconing
	2.9.2 Network beaconing

	3 Configuration Language
	3.1 APRSIS Interface Definition
	3.2 Radio Interface Definitions
	3.3 Digipeating Definitions
	3.3.1 <trace>
	3.3.2 <wide>
	3.3.3 <trace>/<wide> Default Rules

	3.4 NetBeacon definitions
	3.5 RfBeacon definitions

