
APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

APRX Software Requirement Specification

Table of Contents
1 APRX Software Requirement Specification... 2

1.1 Purpose:.. 2
1.2 Usage Environments:... 3
1.3 AX.25 details for radio channel transmission... 4
1.4 D-STAR <-> APRS.. 5

2 Treatment rules:... 6
2.1 Basic IGate rules:... 6
2.2 Low-Level Transmission Rules:.. 8
2.3 Low-Level Receiving Rules:... 9
2.4 Additional Tx-IGate rules:... 10
2.5 D-STAR/DPRS to APRS gating rules... 11
2.6 Digipeater Rules... 12

2.6.1 APRS (Control=0x03,PID=0xF0) digipeat... 12
2.6.2 Other UI (Control=0x03, PID != 0xF0) digipeats... 13
2.6.3 Other (Control != 0x03) digipeats.. 13
2.6.4 Viscous Digipeating... 14

2.7 Duplicate Detector.. 15
2.7.1 Control=0x03,PID=0xF0: APRS.. 15
2.7.2 Control=0x03,PID!=0xF0: Others.. 15
2.7.3 Control != 0x03: Others... 15

2.8 Radio Interface Statistics Telemetry... 16
2.9 Individual Call-Signs for Each Receiver, or Not?.. 17
2.10 Beaconing... 18

2.10.1 Radio Beaconing... 18
2.10.2 Network beaconing.. 18

3 Configuration Language... 19
3.1 APRSIS Interface Definition.. 20
3.2 Radio Interface Definitions... 20
3.3 Digipeating Definitions.. 21

3.3.1 <trace>.. 23
3.3.2 <wide>... 23
3.3.3 <trace>/<wide> Default Rules... 24

3.4 NetBeacon definitions... 25
3.5 RfBeacon definitions... 26

1 / 27

1

2

3

4

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

1 APRX Software Requirement Specification
This is Requirement Specification for a software serving in Amateur Radio APRS service.

Reader is assumed to be proficient with used terminology, and they are not usually
explained here.

1.1 Purpose:

This describes algorithmic, IO-, and environmental requirements for a software doing any
combination of following four tasks related to APRS service:

1. Listen on messages with a radio, and pass them to APRSIS network service

2. Listen on messages with a radio, and selectively re-send them on radio

3. Listen on messages with a radio, and selectively re-send them on radios on other
frequencies

4. Receive messages from APRSIS network, and after selective filtering, send some of
them on radio

Existing aprx software implements Receive-Only (Rx) IGate functionality, and the purpose
of this paper is to map new things that it will need for extending functionality further.

2 / 27

5

6

7
8

9

10
11

12

13

14
15

16
17

18

19
20

21

22

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

1.2 Usage Environments:

The aprx software can be used in several kinds of environments to handle multiple tasks
associated with local APRS network infrastructure tasks.

On following one should remember that amateur radio transmitters need a specially
licensed owner/operator or a license themselves, but receivers do not need such in usual
case:

1. License-free Receive-Only (RX) IGate, to add more “ears” to hear packets, and to
pipe them to APRSIS. (Owner/operator has a license, but a receiver does not need
special transmitter license.)

2. Licensed bidirectional IGate, selectively passing messages from radio channels to
APRSIS, and from APRSIS to radio channels, but not repeating packets heard on a
radio channel back to a radio channel.

3. Licensed bidirectional IGate plus selectively re-sending of packets heard on radio
channels back to radio channels (= digipeater)

4. Licensed system for selectively re-sending of packets heard on radio channels back
to other radio channels (= digipeater), and this without bidirectional IGate service.

5. Licensed system for selectively re-sending of packets heard on radio channels back
to radio channels (= digipeater), and doing with with “receive only” IGate, so
passing information heard on radio channel to APRSIS, and not the other way at all.

In more common case, there is single radio and single TNC attached to digipeating (re-
sending), in more challenging cases there are multiple receivers all around, and very few
transmitters. Truly challenging systems operate on multiple radio channels. As single-
TNC and single-radio systems are just simple special cases of these complex systems,
and for the purpose of this software requirements we consider the complex ones:

1. 3 different frequencies in use, traffic is being relayed in between them, and the
APRSIS network.

2. On each frequency there are multiple receivers, and one well placed transmitter.

3. Relaying from one frequency to other frequency may end up having different rules,
than when re-sending on same frequency: Incoming packet retains traced paths,
and gets WIDEn-N/TRACEn-N requests replaced with whatever sysop wants.

3 / 27

23

24
25

26
27
28

29
30
31

32
33
34

35
36

37
38

39
40
41

42

43
44
45
46
47

48
49

50

51
52
53

54

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

1.3 AX.25 details for radio channel transmission

Used frame structure is per AX.25 v2.0 specification, not AX.25 v2.2.

• Source call-signs are always identifying message sender
• Destination call-signs indicate target group, most commonly "APRS", but also

message originator specific software identifiers are used.
• Digipeater fields use preferably "New-N paradigm" style "WIDEn-N" or "TRACEn-N"

values on frame origination, and the digipeaters will then place their call-signs on
the via-field as trace information:

• Original: N0CALL-9>APRS,WIDE2-2
• After first digipeat either:

• N0CALL-9>APRS,WIDE2-1
• N0CALL-9>APRS,N1DIGI*,WIDE2-1

• After second digipeat any of:
• N0CALL-9>APRS,WIDE2*
• N0CALL-9>APRS,N1DIGI*,WIDE2*
• N0CALL-9>APRS,N1DIGI*,N2DIGI*,WIDE2*

• ('*' means that H-bit on digipeater field's SSID byte has been set, and that
other digipeaters must ignore those fields.)

• Also several older token schemes in the via-fields are still recognized

Important differences on address field bit treatments:

• Three topmost bits on Source and Destination address fields SSID bytes are never
validated.

• Most common values seen on radio transmissions are based on AX.25 v2.2
chapter 6.1.2 "Command" combinations: 011 for source, and 111 for
destination.

• In practice all 64 combinations of these 6 bits are apparent in radio networks.
Receiver really must ignore them.

• VIA address fields (digipeater fields) can be up to 8, AX.25 v2.2 changed earlier
specification from 8 to 2 via fields, and thus AX.25 v2.2 is ignored here.

• The topmost bit on SSID bytes of VIA address fields is "H" alias "Has been
digipeated", and the two reserved ones should be "11", but only "H"-bit is used, and
everybody ignores those two reserved bits!

After the AX.25 address fields, used control byte is always 0x03 (UI frame,) and used PID
byte is 0xF0 for APRS.

This system does process all type of AX.25 frames at least on digipeater, including UI
TCP/IP, and AX.25 CONS.

4 / 27

55

56

57

58
59

60
61
62

63

64

65

66

67

68

69

70

71
72

73

74

75
76

77
78
79

80
81

82
83

84
85
86

87
88

89
90

91

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

1.4 D-STAR <-> APRS

TO BE WRITTEN

• What is the physical and link-level protocol interface to D-STAR radio?

• What is the D-STAR's DPRS protocol?

• Existing D-STAR/DPRS to APRS gateways pass positional packets as 3rd-party
frames, and are one of few 3rd-party types that are IGated to APRSIS as is.

5 / 27

92

93

94

95

96
97

98

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2 Treatment rules:
Generally: All receivers report what they hear straight to APRSIS, after small amount of
filtering of junk messages, and things which explicitly state that they should not be sent to
APRSIS.

2.1 Basic IGate rules:

General rules for these receiving filters are described here:

http://www.aprs-is.net/IGateDetails.aspx

Gate all packets heard on RF to the Internet (Rx-IGate) EXCEPT

1. 3rd party packets (data type '}') should have all before and including the data
type stripped and then the packet should be processed again starting with
step 1 again. There are cases like D-STAR gateway to APRS of D-STAR
associated operator (radio) positions.

2. generic queries (data type '?').
3. packets with TCPIP, TCPXX, NOGATE, or RFONLY in the header, especially

in those opened up from a 3rd party packets.

Gate message packets and associated posits to RF (Tx-IGate) if

1. the receiving station has been heard within range within a predefined time
period (range defined as digi hops, distance, or both).

2. the sending station has not been heard via RF within a predefined time
period (packets gated from the Internet by other stations are excluded from
this test).

3. the sending station does not have TCPXX, NOGATE, or RFONLY in the
header.

4. the receiving station has not been heard via the Internet within a predefined
time period.

A station is said to be heard via the Internet if packets from the station contain
TCPIP* or TCPXX* in the header or if gated (3 rd party) packets are seen on RF
gated by the station and containing TCPIP or TCPXX in the 3rd party header (in
other words, the station is seen on RF as being an IGate).

Gate all packets to RF based on criteria set by the sysop (such as call-sign, object
name, etc.).

Rx-IGate to APRSIS can use duplicate detection, and refuse to repeat same packet over
and over again to APRSIS network.

With more advanced looking inside frames to be relayed, both the digipeater and Tx-IGate
can use filtering rules, like “packet reports a position that is within my service area.”

6 / 27

99

100
101
102

103

104

105

106

107

108
109
110
111
112
113
114

115

116

117
118
119
120
121
122
123
124
125

126
127
128
129

130
131

132

133
134

135
136

137

http://www.aprs-is.net/IGateDetails.aspx

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

From multiple receivers + single (or fewer) transmitter(s) follows, than when a more usual
system does not hear what it sent out itself, this one will hear, and its receivers must have
a way to ignore a frame it sent out itself a moment ago.

Without explicit “ignore what I just sent” filtering, an APRS packet will get reported twice to
APRSIS:

 rx ⇒ igate-to-aprsis + digi ⇒ tx ⇒ rx ⇒ igate-to-aprsis + digi (dupe filter stops)

Digipeating will use common packet duplication testing to sent similar frame out only once
per given time interval (normally 30 seconds.)

An RF/Analog way to handle the “master-TX spoke this one, I will ignore it” could be use of
audio subtones (American Motorola lingo: PL tone, otherwise known as CTCSS.)
Digipeater transmitters have unique CTCSS subtone at each, and all receivers have
subtone decoders. When they detect same subtone as their master has, they mute the
receiver to data demodulator audio signal.

A third way would be to recognize their master transmitter call-sign in AX.25 VIA path, or at
FROM field, which presumes that the master transmitters will do TRACE mode adding of
themselves on digipeated paths.

7 / 27

138

139
140
141

142
143

144

145
146

147

148
149
150
151
152

153

154
155
156

157

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.2 Low-Level Transmission Rules:

These rules control repeated transmissions of data that was sent a moment ago, and other
basic transmitter control issues, like persistence. In particular the persistence is fine
example of how to efficiently use radio channel, by sending multiple small frames in quick
succession with same preamble and then be silent for longer time.

For each transmitter:

1. A candidate packet is subjected to a number of filters, and if approved for it, the
packet will be put on duplicate packet detection database (one for each transmitter.)
See Digipeater Rules, below. System counts the number of hits on the packet,
first arrival is count=1.

2. Because the system will hear the packets it sends out itself, there must be a global
expiring storage for recently sent packets, which the receivers can then compare
against. (Around 100 packets of 80-120 bytes each.) This storage gets a full copy
of packet being sent out – a full AX.25 frame, and it is not same things as duplicate
detector!

Also, transmitters should be kept in limited leash: Transmission queue is less than T
seconds (< 5 ?), which needs some smart scheduling coding, when link from computer to
TNC is considerably faster.

Original KISS interface is defined as “best effort”: if TNC is busy while host sends a frame,
the frame may be discarded, and “upper layers” will resend. In APRS Digipeating, the
upper layer sends the packet once, and then declares circa 30 second moratorium on
packets with same payload.

8 / 27

158

159
160
161
162

163

164
165
166
167

168
169
170
171
172

173
174
175

176
177
178
179

180

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.3 Low-Level Receiving Rules:

1. Received AX.25 packet is compared against “my freshly sent packets” storage, and
matched ones are dropped. (Case of one/few transmitters, and multiple receivers
hearing them.)

2. Received packet is validated against AX.25 basic structure, invalid ones are
dropped.

1. This means that AX.25 address headers are validated per their rules (including
ignored bit sub-groups in the rules).

3. Received APRS packet is parsed for APRS meaning [type, position]/[unknown] for
optional latter area filtering. Received other PID packets are not parsed.

4. Received APRS packet is validated against Rx-IGate rules, forbidden ones are not
Rx-IGated (like when a VIA-field contains invalid data.) Received other PID UI-
packets are not validated.

5. Packet may be rejected for Rx-IGate, but it may still be valid for digipeating!
For example an APRS 3rd party frame is OK to digipeat, but not to Rx-IGate to
APRSIS! Also some D-STAR to APRS gateways output 3rd party frames, while the
original frame is quite close to an APRS frame.

Divide packet rejection filters to common, and destination specific ones.

9 / 27

181

182
183
184

185
186

187
188

189
190

191
192
193

194
195
196
197

198

199

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.4 Additional Tx-IGate rules:

The Tx-IGate can have additional rules for control:

1. Multiple filters look inside the message, and can enforce a rule of “repeat only
packets within my service area,” or to “limit passing message responses only to
destinations within my service area”. Filter input syntax per javAPRSSrvr's adjunct
filters.

2. Basic gate filtering rules:

1. the receiving station has been heard within range within a predefined time
period (range defined as digi hops, distance, or both).

2. the sending station has not been heard via RF within a predefined time period
(packets gated from the Internet by other stations are excluded from this test).

3. the sending station does not have TCPXX, NOGATE, or RFONLY in the header.
4. the receiving station has not been heard via the Internet within a predefined time

period.

A station is said to be heard via the Internet if packets from the station contain
TCPIP* or TCPXX* in the header or if gated (3rd-party) packets are seen on RF
gated by the station and containing TCPIP or TCPXX in the 3rd-party header (in
other words, the station is seen on RF as being an IGate).

10 / 27

200

201

202
203
204
205

206

207
208
209
210
211
212
213

214
215
216
217

218

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.5 D-STAR/DPRS to APRS gating rules

TO BE WRITTEN

11 / 27

219

220

221

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.6 Digipeater Rules

2.6.1 APRS (Control=0x03,PID=0xF0) digipeat

Digipeater will do following for each transmitter for each data source per transmitter:

1. Feed candidate packet to duplicate detector. (Details further below.)

1. Viscous Digipeater delay happens here (see below.)

2. If the packet (after possible viscousness delay) has hit count over 1, drop it.

2. Check VIA fields for this transmitter's call-sign. If match is found, and its H-bit is not
set, mark all VIA field's H-bit set up to and including the call-sign, subject it to
duplicate comparisons, and digipeat without further WIDE/TRACE token
processing. If the H-bit was set, drop the frame. However: Do not support “alias
WIDE1-1” rules that old style systems used in order to create so called “fill-in
digipeater”. Do it smarter.

3. Optionally multiple source specific filters look inside the packets, and can enforce a
rule of “repeat only packets within my service area.”

4. Hop-Count filtering:

1. Count number of hops the message has so far done, and figure out the number
of hops the message has been requested to do
(e.g. “OH2XYZ-1>APRS,OH2RDU*,WIDE7-5: ...” will report that there was
request of 7 hops, so far 2 have been executed – one is shown on trace path.)

2. If either request count or executed count are over any of configured limits, the
packet is dropped.

5. FIXME: Cross frequency digipeating? Treat much like Tx-IGate?
Relaying from one frequency to other frequency may end up having different rules,
than when re-sending on same frequency: Incoming packet retains traced paths,
and gets WIDEn-N/TRACEn-N requests replaced with whatever sysop wants.

6. Cross band relaying may need to add both an indication of “received on 2m”, and
transmitter identifier: “sent on 6m”:
“OH2XYZ-1>APRS,RX2M*,OH2RDK-6*,WIDE3-2: ...”

This “source indication token” may not have anything to do with real receiver
identifier, which is always shown on packets passed to APRSIS.

7. WIDEn-N/TRACEn-N treatment rules: Have configured sets of keywords for both
modes. Test TRACE set first, and by default have there keywords: WIDE,TRACE.

1. Check if first non-digipeated VIA field has this transmitter call-sign, and digipeat
if it is found.

2. Check if first non-digipeated VIA field has any of this transmitters aliases. If
match is found, substitute there transmitter call-sign, and mark H-bit.

The MIC-e has a weird way to define same thing as normal packets do with

12 / 27

222

223

224

225

226

227

228
229
230
231
232
233

234
235

236

237
238
239
240

241
242

243
244
245
246

247
248
249

250
251

253
254

255
256

257
258

259

260

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

SRCCALL-n>DEST,WIDE2-2: ...
The MIC-e way (on specification, practically nobody implements it) is:

SRCCALL-n>DEST-2: ...

2.6.2 Other UI (Control=0x03, PID != 0xF0) digipeats

Optionally the Digipeater functionality will handle also types of UI frames, than APRS.

Support for this is optional needing special configuration enable entries.

Digipeater will do following for each transmitter for each data source per transmitter:

1. Optionally check PID from “these I digipeat” -list. Drop on non-match.

2. If the frame has no VIA fields with H-bit clear, feed the packet to duplicate checker,
and drop it afterwards.

3. Check VIA fields for this transmitter's call-sign. If match is found, and its H-bit is not
set, mark all VIA field's H-bit set up to and including the call-sign, subject it to
possible duplicate comparisons, and digipeat without further WIDE/TRACE token
processing. If the H-bit was set, drop the frame.

4. Per PID value:

1. Optional WIDE/TRACE/RELAY processing

2. Optionally per PID feed candidate packet to duplicate detector. (Similar to
APRS case?)

5. Optional Hop-Count Filtering? (Similar to APRS case?)

6. Treat Cross-Frequency Digipeating as anything special? (Compare with APRS
case above.)

2.6.3 Other (Control != 0x03) digipeats

Optionally the Digipeater functionality will handle also types of frames, than UI frames.

Support for this is optional needing special configuration enable entry.

Digipeater will do following for each transmitter for each data source per transmitter:

1. Explicit transmitter call-sign digipeat handles digipeat of all kinds of AX.25 frames.
Comparison is done only on first VIA field without H-bit.

2. There is no duplicate detection.

3. No other type special digipeat is handled. (That is, NET/ROM, ROSE which do
hop-by-hop retry and retransmission.)

13 / 27

261
262
263

264

265

266

267

268

269

270
271

272
273
274
275

276

277

278
279

280

281
282

283

284

285

286

287

288
289

290

291
292

293

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.6.4 Viscous Digipeating

Viscous Digipeating is defined to mean a digipeater that puts heard packets on a
“probation delay FIFO” , where they sit for a fixed time delay, and after that delay the
system checks to see if same packet (comparison by dupe-check algorithm) has been
heard from some other digipeater in the meantime.

The Viscous Digipeaters are fill-in/car/backup type digipeater systems that repeat heard
packets only if somebody else has not done it already.

The time delay is fixed number of seconds, which is configured on the system, and should
be rather small (5-8 seconds), as duplicate detection algorithm uses storage lifetime of
about 30 seconds, and digipeaters must not cause too long delays.

With some application space combinatoric analysis, following rules emerged:

Packets arriving from non-viscous sources trump those waiting in viscous queue. First
one arriving will be transmitted, unless the viscous queue has no longer this packet (but it
was there.)

• delayed_seen > 0, seen == 1, pbuf == NULL -> drop this

• delayed_seen > 0, seen == 1, pbuf != NULL -> clean pbuf, transmit this

• delayed_seen == 0, seen == 1 -> transmit this

Subsequent packets arriving from non-viscous sources are dropped as duplicates (seen >
1 -> drop this)

Packets arriving from any viscous source are dropped, if there already was some direct
delivery packet (seen > 0 -> drop)

First packet arriving from any viscous source is put on viscous queue, unless there was
non-viscous packet previously:

• delayed_seen == 1, seen > 0 -> drop this

• delayed_seen == 1, seen == 0 -> put this on viscous queue

Then among viscous sources:

– "Transmitter" kind source: an <interface> which is same as that of <digipeater>'s
transmitter <interface>.

– "Elsewhere" kind source: an <interface> which is some other than that of
transmitter's, but has viscous-delay > 0

Account the number of viscous sourced packets sourced from "transmitter"

 if (source_is_transmitter)

 seen_on_transmitter += 1;

For second and subsequent viscous sourced packets, if any of observed packets came
from transmitter (seen_on_transmitter > 0), then drop current packet, and clear possible
viscous queued pbuf.

14 / 27

294

295
296
297
298

299
300

301
302
303

304

305
306
307

308

309

310

311
312

313
314

315
316

317

318

319

320
321

322
323

324

325

326

327
328
329

330

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.7 Duplicate Detector

Duplicate detector has two modes, depending on PID value of the frame.

All packets selected to go to some transmitter are fed on the duplicate detector of that
transmitter, and found matches increase count of seen instances of that packet.

2.7.1 Control=0x03,PID=0xF0: APRS

Normal digipeater duplicate packet detection compares message source (with SSID),
destination (without SSID!), and payload data against other packets in self-expiring
storage called “duplicate detector”. Lifetime of this storage is commonly considered to be
30 seconds.

APRS packets should not contain CR not LF characters, and they should not have extra
trailing spaces, but software bugs in some systems put those in, The packet being
compared at Duplicate Detector will be terminated at first found CR or LF in the packet,
and if there is a space character(s) preceding the line end, also those are ignored when
calculating duplication match. However: All received payload data is sent as is without
modifying it in any way! (Some TNC:s have added one or two extra space characters
on packets they digipeat...)

The “destination without SSID” rule comes from MIC-e specification, where a destination
WIDE uses SSID to denote number of distribution hops. Hardly anybody implements it.

2.7.2 Control=0x03,PID!=0xF0: Others

Other type digipeater duplicate packet detection compares message source, and
destination (both with SSID!), and payload data against other packets in self-expiring
storage called “duplicate detector”. Lifetime of this storage is commonly considered to be
30 seconds.

For PID != 0xF0 the duplicate detection compares whole payload.

2.7.3 Control != 0x03: Others

No duplicate detection for other types of AX.25 frames.

15 / 27

331

332

333
334

335

336

337
338
339
340

341
342
343
344
345
346
347

348
349

350

351

352
353
354
355

356

357

358

359

360

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.8 Radio Interface Statistics Telemetry

Current aprx software offers telemetry data on radio interfaces. It consists of following four
things. Telemetry is reported to APRS-IS every 10 minutes:

1. Channel occupancy average in Erlangs over 1 minute interval, and presented as
busiest 1 minute within the report interval. Where real measure of carrier presence
on radio channel is not available, the value is derived from number of received
AX.25 frame bytes plus a fixed Stetson-Harrison constant added per each packet
for overheads. That is then divided by presumed channel modulation speed, and
thus derived a figure somewhere in between 0.0 and 1.0.

2. Channel occupancy average in Erlangs over 10 minute interval. Same data source
as above.

3. Count of received packets over 10 minutes.

4. Count of packets dropped for some reason during that 10 minute period.

Additional telemetry data points could be:

1. Number of transmitted packets over 10 minute interval

2. Number of packets IGated from APRSIS over 10 minute interval

3. Number of packets digipeated for this radio interface over 10 minute interval

4. Erlang calculations could include both Rx and Tx, but could also be separate.

16 / 27

361

362
363

364
365
366
367
368
369

370
371

372

373

374

375

376

377

378

379

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.9 Individual Call-Signs for Each Receiver, or Not?

Opinions are mixed on the question of having separate call-signs for each receiver (and
transmitter), or not. Even the idea to use all 16 available SSIDs for a call-sign for
something does get some opposition.

• There is no license fee in most countries for receivers, and there is no need to limit
used call-signs only on those used for the site transmitters.

• There is apparently some format rule on APRSIS about what a “call-sign” can be,
but it is rather lax: 6 alphanumerics + optional tail of: “-” (minus sign) and one or two
alphanumerics. For example OH2XYZ-R1 style call-sign can have 36 different
values before running out of variations on last character alone (A to Z, 0 to 9.)

• Transmitter call-signs are important, and there valid AX.25 format call-signs are
mandatory.

On digipeater setup the receiver call-signs are invisible on RF. There only transmitter call-
signs must be valid AX.25 addresses.

Transmitters should have positional beacons for them sent on correct position, and
auxiliary elements like receivers could have their positions either real (when elsewhere), or
actually placed near the primary Tx location so that they are separate on close enough
zoomed map plot.

Using individual receiver identities (and associated net-beaconed positions near the real
location) can give an idea of where the packet was heard, and possibly on which band. At
least the aprs.fi is able to show the path along which the position was heard.

17 / 27

380

381
382
383

384
385

386
387
388
389

390
391

392
393

394

395
396
397
398

399
400
401

402

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

2.10Beaconing

Smallest time interval available to position viewing at aprs.fi site is 15 minutes. A beacon
interval longer than that will at times disappear from that view. Default view interval is 60
minutes.

Beacon transmission time must not be manually configured to fixed exact minute. There
are large peaks in APRSIS traffic because of people are beaconing out every 5 minutes,
and every 10 minutes, at exact 5/10 minutes. (Common happening with e.g. digi_ned.)

Beaconing system must be able to spread the requests over the entire cycle time (10 to 30
minutes) evenly. Even altering the total cycle time by up to 10% at random at the start of
each cycle should be considered (and associated re-scheduling of all beacon events at
every cycle start). All this to avoid multiple non-coordinated systems running at same
rhythm. System that uses floating point mathematics to determine spherical distance in
between two positions can simplify the distribution process by using float mathematics.
Also all-integer algorithms exist (e.g. Bresenham's line plotting algorithm.)

float dt = (float)cycle_in_seconds;
for (int i = 0; i < number_of_beacons;++i) {

beacon[i].tx_time = now + (i+1) * dt;
}

With only one beacon, it will go out at the end of the beacon cycle.

Receiver location beacons need only to be on APRSIS with additional TCPXX token,
transmitter locations could be also on radio.

2.10.1 Radio Beaconing

“Tactical situation awareness” beaconing frequency could be 5-10 minutes, WB4APR does
suggest at most 10 minutes interval. Actively moving systems will send positions more
often. Transmit time spread algorithm must be used.

Minimum interval of beacon transmissions to radio should be 60 seconds. If more
beacons need to be sent in this time period, use of Persistence parameter on TNCs (and
KISS) should help: Send the beacons one after the other (up to 3?) during same
transmitter activation, and without prolonged buffer times in between them. That is
especially suitable for beacons without any sort of distribution lists.

Minimize the number of radio beacons!

2.10.2 Network beaconing

Network beaconing cycle time can be up to 30 minutes.

Network beaconing can also transmit positions and objects at much higher rate, than radio
beaconing. Transmit time spread algorithm must be used.

Net-beacons could also be bursting similar to radio beacon Persistence – within a reason.

18 / 27

403

404
405
406

407
408
409

410
411
412
413
414
415
416

417
418
419
420

421

422
423

424

425
426
427

428
429
430
431
432

433

434

435

436
437

438

439

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

3 Configuration Language
System configuration language has several semi-conflicting requirements:

1. Easy to use

2. Minimal setup necessary for start

3. Sensible defaults

4. Self-documenting

5. Efficient self-diagnostics

6. Powerful – as ability to define complicated things

Examples of powerful, yet miserably complicated rule writing can be seen on digi_ned, and
aprsd. Both have proven over and over again that a correct configuration is hard to make.

On Embedded front, things like UIDIGI have tens of parameters to set, many of which can
be configured so that the network behaviour is degraded, if not downright broken.

UIView32 has poor documentation on what to put on destination address, and therefore
many users put there “WIDE” instead of “APRS,WIDE1-1”, and thus very create broken
beacons.

Current aprx configuration follows “minimal setup” and “easy to use” rules, it is even “self-
documenting” and “self-diagnosing”, but its lack of power becomes apparent.

Some examples:

1. radio serial /dev/ttyUSB0 19200 8n1 KISS callsign N0CALL-14

2. netbeacon for N0CALL-13 dest "APRS" via “NOGATE” symbol "R&"
 lat "6016.30N" lon "02506.36E" comment "aprx - an Rx-only iGate"

The “radio serial” definition lacks handling of multiple TNCs using KISS device IDs, and
there is no easy way to define subid/callsign pairs.

The “netbeacon” format can do only basic “!”-type location fix packets. Extending it to
objects would probably cover 99% of wanted use cases.

Both have extremely long input lines, no input line folding is supported!

19 / 27

440

441

442

443

444

445

446

447

448

449
450

451
452

453
454
455

456

457
458

459

460

461
462

463
464

465
466

467

468

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

3.1 APRSIS Interface Definition

There can be multiple APRSIS connections defined, although only one is used at any time.

Parameter sets controlling this functionality is non-trivial.

<aprsis> # Alternate A, single server, defaults
 login OH2XYZ-R1
 server finland.aprs2.net:14580
 filter
 heartbeat-timeout 2 minutes
</aprsis>

<aprsis> # Alternate B, multiple alternate servers
 login OH2XYZ-R1
 <server finland.aprs2.net:14580>
 heartbeat-timeout 2 minutes
 filter
 </server>
 <server rotate.aprs.net:14580>
 heartbeat-timeout 120 seconds
 filter
 # Alt Login ?
 </server>
</aprsis>

3.2 Radio Interface Definitions

Interfaces are of multitude, some are just plain serial ports, some can be accessed via
Linux internal AX.25 network, or by some other means, platform depending.

<interface>
 serial-device /dev/ttyUSB1 19200 8n1 KISS
 tx-ok false # receive only (default)
 callsign OH2XYZ-R2 # KISS subif 0
</interface>
<interface>
 serial-device /dev/ttyUSB2 19200 8n1 KISS
 <kiss-subif 0>
 callsign OH2XYZ-2
 tx-ok true # This is our transmitter
 </kiss-subif>
 <kiss-subif 1>
 callsign OH2XYZ-R3 # This is receiver
 tx-ok false # receive only (default)
 </kiss-subif>
</interface>
<interface>
 ax25-device OH2XYZ-6 # Works only on Linux systems
 tx-ok true # This is also transmitter
</interface>

20 / 27

469

470

471

472
473
474
475
476
477

478
479
480
481
482
483
484
485
486
487
488
489

490

491
492

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

3.3 Digipeating Definitions

The powerfulness is necessary for controlled digipeating, where traffic from multiple
sources gets transmutated to multiple destinations, with different rules for each of them.

1. Destination device definition (refer to “serial radio” entry, or AX.25 network
interface), must find a “tx-ok” feature flag on the interface definition.

2. Possible Tx-rate-limit parameters

3. Groups of:

1. Source device references (of “serial radio” or ax25-rxport call-signs, or “APRSIS”
keyword)

2. Filter rules, if none are defined, source will not pass anything in. Can have also
subtractive filters – “everything but not that”. Multiple filter entries are processed
in sequence.

3. Digipeat limits – max requests, max executed hops.

4. Control of treat WIDEn-N as TRACEn-N or not. (Default: treat as TRACE, know
WIDEn-N, TRACEn-N, WIDE, TRACE, RELAY and thread them as aliases.)

5. Alternate keywords that are controlled as alias of “WIDEn-N”

6. Alternate keywords that are controlled as alias of “TRACEn-N”

7. Additional rate-limit parameters

APRS Messaging transport needs some sensible test systems too:

• Station has been heard directly on RF without intermediate digipeater

• Station has been heard via up to X digipeater hops (X <= 2 ?)

APRS messaging stations may not be able to send any positional data!

21 / 27

513

514
515

516
517

518

519

520
521

522
523
524

525

526
527

528

529

530

531

532

533

534

535

536

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

Possible way to construct these groups is to have similar style of tag structure as Apache
HTTPD does:

<digipeater>
 transmit OH2XYZ-2 # to interface with callsign OH2XYZ-2
 ratelimit 20 # 20 posts per minute
viscous-delay 5 # 5 seconds delay on viscous digipeater
 <trace>
 keys RELAY,TRACE,WIDE,HEL
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </trace>
<wide> # Use internal default
</wide>
 <source>
 source OH2XYZ-2 # Repeat what we hear on TX TNC
 filters
 relay-format digipeated # default
 </source>
 <source>
 source OH2XYZ-R2 # include auxiliary RX TNC data
 filters
 relay-format digipeated # default
 </source>
 <source>
 source OH2XYZ-7 # Repeat what we hear on 70cm
 filters
 relay-format digipeated # default
 relay-addlabel 70CM # Cross-band digi, mark source
 </source>
 <source>
 source DSTAR # Cross-mode digipeat..
 filters
 relay-format digipeated # FIXME: or something else?
 relay-addlabel DSTAR # Cross-band digi, mark source
 out-path WIDE2-2
 </source>
 <source>
 source APRSIS # Tx-IGate some data too!
 filters
 ratelimit 10 # only 10 IGated msgs per minute
 relay-format third-party # for Tx-IGated
 out-path WIDE2-2
 </source>
</digipeater>

22 / 27

537

538
539

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

582

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

3.3.1 <trace>

Defines a list of keyword prefixes known as “TRACE” keys.

When system has keys to lookup for digipeat processing, it looks first the trace keys, then
wide keys. First match is done.

If a per-source trace/wide data is given, they are looked up at first, and only then the global
one. Thus per source can override as well as add on global sets.

 <trace>
 keys RELAY,TRACE,WIDE,HEL1

 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </trace>

3.3.2 <wide>

Defines a list of keyword prefixes known as “WIDE” keys.

When system has keys to lookup for digipeat processing, it looks first the trace keys, then
wide keys. First match is done.

If a per-source trace/wide data is given, they are looked up at first, and only then the global
one. Thus per source can override as well as add on global sets.

 <wide>
 keys WIDE,HEL
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </wide>

1 “HEL” is airport code for Helsinki Airport, so it is quite OK for local area distribution code as well.

23 / 27

583

584

585
586

587
588

589
590
591
592
593

594

595

596

597
598

599
600

601
602
603
604
605

606

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

3.3.3 <trace>/<wide> Default Rules

The <digipeater> level defaults are:

 <trace>
 keys RELAY,TRACE,WIDE
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </trace>
 <wide>
 keys WIDE # overridden by <trace>
 maxreq 4 # Max of requested, default 4
 maxdone 4 # Max of executed, default 4
 </wide>

The <source> level defaults are:

 <trace>
 keys # Empty set
 maxreq 0 # Max of requested, undefined
 maxdone 0 # Max of executed, undefined
 </trace>
 <wide>
 keys # Empty set
 maxreq 0 # Max of requested, undefined
 maxdone 0 # Max of executed, undefined
 </wide>

24 / 27

607

608

609
610
611
612
613
614
615
616
617
618

619

620

621
622
623
624
625
626
627
628
629
630

631

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

3.4 NetBeacon definitions

Netbeacons are sent only to APRSIS, and Rfbeacons to radio transmitters.

<netbeacon>
to APRSIS # default for netbeacons
 for N0CALL-13 # must define
 dest "APRS" # must define
 via "TCPIP,NOGATE" # optional
 type "!" # optional, default "!"
 symbol "R&" # must define
 lat "6016.30N" # must define
 lon "02506.36E" # must define
 comment "aprx - an Rx-only iGate" # optional
</netbeacon>

<netbeacon>
to APRSIS # default for netbeacons
 for N0CALL-13 # must define
 dest "APRS" # must define
 via "TCPIP,NOGATE" # optional
Define any APRS message payload in raw format, multiple OK!
 raw "!6016.35NR02506.36E&aprx - an Rx-only iGate"
 raw "!6016.35NR02506.36E&aprx - an Rx-only iGate"
</netbeacon>

25 / 27

632

633

634
635
636
637
638
639
640
641
642
643
644

645
646
647
648
649
650
651
652
653

654

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

3.5 RfBeacon definitions
Netbeacons are sent only to APRSIS, and Rfbeacons to radio
transmitters.

<rfbeacon>
to OH2XYZ-2 # defaults to first transmitter
 for N0CALL-13 # must define
 dest "APRS" # must define
 via "NOGATE" # optional
 type "!" # optional, default "!"
 symbol "R&" # must define
 lat "6016.30N" # must define
 lon "02506.36E" # must define
 comment "aprx - an Rx-only iGate" # optional
</rfbeacon>

<rfbeacon>
to OH2XYZ-2 # defaults to first transmitter
 for OH2XYZ-2 # must define
 dest "APRS" # must define
 via "NOGATE" # optional
 type ";" # ";" = Object
 name "OH2XYZ-6" # object name
 symbol "R&" # must define
 lat "6016.30N" # must define
 lon "02506.36E" # must define
 comment "aprx - an Rx-only iGate" # optional
</rfbeacon>

26 / 27

655

656
657

658
659
660
661
662
663
664
665
666
667
668

669
670
671
672
673
674
675
676
677
678
679
680

APRX Software Requirement Specification – version 0.40 – Matti Aarnio, OH2MQK

Configuration entry keys are:

name Optionality by type

! / ;)

to x(1) x(1) x(1)

for -- -- --

dest -- -- --

via x x x

raw X(2,5) X(2,5) X(2,5)

type x(2) x(2) x(2)

name invalid x(4) x(4)

symbol X(3,4) X(3,4) X(3,4)

lat X(3,4) X(3,4) X(3,4)

lon X(3,4) X(3,4) X(3,4)

comment X(3,4) X(3,4) X(3,4)

Optionality notes:

1. Netbeacons default is APRSIS system, and no transmitter is definable. Rfbeacons
default to first transmitter call-sign defined in <interface> sections, any valid
transmitter call-sign is OK for “to” keyword.

2. When a “raw” is defined, no “type” must be defined, nor any other piecewise parts
of symbol/item/object definitions.

3. Piecewise definitions of basic positional packets must define at least type + symbol
+ lat + lon. The comment is optional, and name is rejected if defined.

4. Piecewise definitions of item and object packets must define at least type + name
+ symbol + lat + lon. The comment is optional.

5. Multiple “raw” entries are permitted, they share to + for + dest + via -field data, and
each generates a beacon entry of its own.

6. Defining timestamped position/object/item packet will get a time-stamp of “h” format
(hours, minutes, seconds) generated when beacon is sent. This applies also to raw
packets! Computer must then have some reliable time source, NTP or GPS.

27 / 27

681

682

683

684

685
686
687

688
689

690
691

692
693

694
695

696
697
698

699

	1 APRX Software Requirement Specification
	1.1 Purpose:
	1.2 Usage Environments:
	1.3 AX.25 details for radio channel transmission
	1.4 D-STAR <-> APRS

	2 Treatment rules:
	2.1 Basic IGate rules:
	2.2 Low-Level Transmission Rules:
	2.3 Low-Level Receiving Rules:
	2.4 Additional Tx-IGate rules:
	2.5 D-STAR/DPRS to APRS gating rules
	2.6 Digipeater Rules
	2.6.1 APRS (Control=0x03,PID=0xF0) digipeat
	2.6.2 Other UI (Control=0x03, PID != 0xF0) digipeats
	2.6.3 Other (Control != 0x03) digipeats
	2.6.4 Viscous Digipeating

	2.7 Duplicate Detector
	2.7.1 Control=0x03,PID=0xF0: APRS
	2.7.2 Control=0x03,PID!=0xF0: Others
	2.7.3 Control != 0x03: Others

	2.8 Radio Interface Statistics Telemetry
	2.9 Individual Call-Signs for Each Receiver, or Not?
	2.10 Beaconing
	2.10.1 Radio Beaconing
	2.10.2 Network beaconing

	3 Configuration Language
	3.1 APRSIS Interface Definition
	3.2 Radio Interface Definitions
	3.3 Digipeating Definitions
	3.3.1 <trace>
	3.3.2 <wide>
	3.3.3 <trace>/<wide> Default Rules

	3.4 NetBeacon definitions
	3.5 RfBeacon definitions

